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Abstract

We consider the method of moments estimation of a structural equation in a panel dynamic
simultaneous equations model under different sample size combinations of cross-sectional di-
mension, N, and time series dimension, T . Two types of linear transformation to remove the
individual-specific effects from the model, first difference and forward orthogonal demeaning, are
considered. We show that the Alvarez and Arellano (2003) type GMM estimator under both
transformations is consistent only if TN → 0 as (N,T )→∞. However, it is asymptotically biased
if T

3

N → κ 6= 0 < ∞. Since the validity of statistical inference depends critically on whether an
estimator is asymptotically unbiased, we suggest a jackknife bias reduction method and derive
its limiting distribution. Monte Carlo studies are conducted to demonstrate the importance of
using an asymptotically unbiased estimator to obtain valid statistical inference.
Keywords: Panel dynamic simultaneous equations model, GMM, First difference, Forward

orthogonal demeaning, Jackknife instrumental variables estimation (JIVE).
JEL classification: C01, C30, C33

∗We would like to thank the co-editor, Guido Kuersteiner, and John Chao, three anonymous referees for very
detailed and helpful comments and suggestions, which have greatly improved the original paper. We would also
like to thank Alan Adelman and John Pedersen for editorial polishing. All remaining errors are solely ours. Partial
research support of China NSFgrant #71131008 and #71631004 to the first author is gratefully acknowledged.
†Department of Economics, University of Southern California, University Park, Los Angeles, California 90089,

chsiao@usc.edu, Department of Quantitative Finance, National Tsing Hua University, Taiwan and WISE, Xiamen
University, Xiamen, China.
‡Department of Economics, Louisiana State University, Baton Rouge, LA, 70803, email: qzhou@lsu.edu.

1



1 Introduction

Inertia in human behavior, and institutional and technological rigidities have lead many to believe
that "all interesting economic behavior is inherently dynamic, dynamic models are the only relevant
models" (Nerlove (2000)). However, the presence of time-invariant unobservable individual-specific
effects in panel dynamic models create correlations between all current, past and future jointly
dependent variables. For a linear regression model, the individual-specific effects affect the outcomes
linearly, and they can be removed from the specification by taking linear difference of an individual’s
time series observations (e.g., Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), Arellano
and Bover (1995)). How this linear transformation is conducted does not affect the asymptotic
distribution of an estimator if the regressors are strictly exogenous with respect to the idiosyncratic
time-varying equation errors (e.g., Hsiao (2014)). But for a dynamic model, different form of
linear transformation creates different form of correlations between the transformed lag dependent
variables and the transformed individual time-varying errors of the equation. How this correlation
affects the asymptotic distribution of a panel dynamic model estimator depends on the relative
size of the cross-sectional dimension N and the time series dimension T (e.g., Alvarez and Arellano
(2003), Akashi and Kunitomo (2012), Hahn and Kuersteiner (2002), Hahn and Newey (2004),
Phillips and Moon (1999)).

For panel dynamic simultaneous equations models, there is another source of correlations,
namely, the correlations between the regressors in a behavior equation with the error of the equation
due to the joint dependence (e.g., Hood and Koopmans (1953)). The asymptotic bias of the con-
ventional method of moments estimators arising from the correlations between the contemporary
regressors and contemporary errors are not easily removed by using the lagged variables as instru-
ment variables (IVs). For example, Akashi and Kunitomo (2012) have shown that if T increases
with N and T

N → c 6= 0 as N → ∞, then the GMM estimator for panel dynamic simultaneous
equations model is not even consistent.

Although consistency is one of the most important and desirable properties for an estimator,
whether an estimator is asymptotically unbiased also plays a critical role in obtaining valid sta-
tistical inference (e.g., Hsiao and Zhang (2015), Hsiao and Zhou (2015)). In this paper, we first
consider the asymptotic properties of the GMM estimator for a structural equation in a panel dy-
namic simultaneous equations model. We show that for a GMM estimator to be consistent, we will
need N much larger than T in the sense T

N → 0 as N →∞. However, as long as T 3

N → κ 6= 0 <∞
as N → ∞, the GMM estimator is still asymptotically biased and the bias is of order

√
κ. Since

the validity of statistical inference depends critically on an estimator is asymptotically unbiased or
not, we suggest a jackknife procedure (e.g., Phillips and Hale (1977), Angrist et al (1999) and Chao
et al (2012)) to correct the bias of GMM. We show that under the assumption that (N,T ) → ∞
with T 3

N → κ 6= 0 <∞,1 the JIVE is asymptotically normal without an asymptotic bias.
The paper is organized as follows. In Section 2 we introduce a simple panel dynamic simultane-

ous equations model and two transformations that are often used to eliminate the individual-specific
effects in the dynamic simultaneous equations model, and discuss their valid instrumental variables
(IVs). Section 3 investigates the asymptotics of the GMM estimator based on the IVs in Section 2.
We characterize the many IVs bias of the GMM estimator under different sample size combinations
of N and T . In Section 4 we introduce the JIVE estimator and derive its asymptotic properties. In
Section 5 we investigate finite sample properties of the GMM estimator and the JIVE using Monte
Carlo simulations. Section 6 concludes the paper. All the mathematical proofs and derivations are

1The alternative asymptotics is introduced by Lee et al (2015) where they consider T3

N
→ κ 6= 0 < ∞, which is

alternative to the asymptotics T
N
→ c 6= 0 <∞ considered by Alvarez and Arellano (2003).
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presented in the appendix.

2 Model

We consider the statistical properties of the GMM estimator of a parametrically identified equation
in a panel dynamic simultaneous equations model. Since it is the joint dependence of a G×1 vector
yit and the dependence between yit and yis (t 6= s) that impact the asymptotic distribution of an
estimator, not the fixed dimension strictly exogenous explanatory variables, xit,

2 there is no loss
of generality to consider the following two equations system (G = 2)3

y1,it = γy1,it−1 + βy2,it + α1i + u1,it, (1)

y2,it = γ21y1,it−1 + γ22y2,it−1 + α2i + u2,it, i = 1, . . . , N, t = 1, . . . , T,

For ease of notations, we also assume yi0 = (y1,i0, y2,i0)′ are observable. Following the limited
information approach of Anderson and Rubin (1949), there is no loss of generality to consider the
estimation of the first equation in system (1), β and γ.

The reduced form of (1) is
yit = Πyit−1 + ξi + vit, (2)

where yit = (y1,it, y2,it)
′ , yit−1 = (y1,it−1, y2,it−1)′ and

B =

(
1 −β
0 1

)
,Π =

(
π11 π12

π21 π22

)
= B−1

(
γ 0
γ21 γ22

)
=

(
γ + βγ21 βγ22

γ21 γ22

)
, (3)

ξi = B−1αi = B−1

(
α1i

α2i

)
,vit = B−1uit = B−1

(
u1,it

u2,it

)
=

(
u1,it + βu2,it

u2,it

)
, (4)

with
E (vit) = 0, E

(
vitv

′
it

)
= Ωv = B−1E

(
uitu

′
it

)
B′−1 = B−1ΩuB

′−1. (5)

For model (1), we assume
Assumption 1. {uit} are i.i.d. over i and t, and are independent of αi and yi0. We also

assume that E (uit) = 0, E (uitu
′
it) = Ωu =

(
σ2
u,1 σu,12

σu,21 σ2
u,2

)
with finite eighth moment.

Assumption 2. All the eigenvalues of Π are within the unit circle.
Assumption 3. The initial values yi0 = (I2 −Π)−1 ξi + wi0 for i = 1, . . . , N, where wi0 =∑∞
s=0 Πsvi,−s is independent of ξi.
Assumption 4. αi (or ξi) are independent of ujt for all i, j, t and with finite fourth moment.
Assumption 1 is made to simplify the derivation. It can be replaced by heteroskedastic uit or

uit following a finite order autoregressive process without affecting the general conclusions of the
asymptotic distribution of an Alvarez and Arellano (2003) type GMM estimator to be discussed
later. Assumption 2 is a stationarity assumption to ensure that the VAR model (2) is stationary.
Assumption 3 actually follows from Assumption 1 and 2 through continuous substitution of (2). It
is explicitly stated here for ease of exposition in later sections, as in Alvarez and Arellano (2003,

2Whatever transformation on the fixed dimension strictly exogenous variables xit is conducted, the transformed
xit remains uncorrelated with the transformed idiosyncratic time-varying errors of the equation.

3Exclusion restriction is required for the identification of the first equation. For discussion of the identification
of an equation in a general panel dynamic system, see Hsiao (1982), Hsiao and Zhou (2015). Akashi and Kunitomo
(2012) consider a special case when γ21 = 0.
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P1126) and Akashi and Kunitomo (2012, P169). Assumption 4 makes no distinction between the
fixed or random effects specification because we consider estimators that remove αi (or ξi).

For model (1), as discussed by Hsiao (2014) and Moon et al (2015), the presence of individual-
specific effects αi raises the issue of incidental parameters for dynamic systems, certain linear
transformation has to be used to remove the the individual-specific effects. We consider two trans-
formations that are most frequently used in applications, (i) the forward orthogonal demeaning
(FOD) in Arellano and Bover (1995), Alvarez and Arellano (2003), etc. and (ii) the first difference
as in Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), etc.

The FOD transformation is defined as, for t = 1, ..., T − 1, let yfit = ct

(
yit − 1

T−t
∑T

s=t+1 yis

)
,

yfit−1 = ct

(
yit−1 − 1

T−t
∑T

s=t+1 yis−1

)
, and ufit = ct

(
uit − 1

T−t
∑T

s=t+1 uis

)
, where c2

t = T−t
T−t+1 .

Then, for the first equation of (1), we have

yf1,it = γyf1,it−1 + βyf2,it + uf1,it, i = 1, . . . , N ; t = 1, . . . , T − 1. (6)

The FOD transformation creates errors that satisfy

E
(
uf1,it

)
= 0, E

(
uf2

1,it

)
= σ2

u,1,

E
(
uf1,itu

f
1,is

)
= 0 if t 6= s;E

(
uf1,itu

f
1,js

)
= 0 if i 6= j;

as shown by Alvarez and Bover (1995) (also see Alvarez and Arellano (2003) or Hsiao and Zhou
(2017)).

Notice that although uf1,it is i.i.d. over i and t, it is correlated with the transformed regressors,

yf2,it and y
f
1i,t−1. However, for 0 ≤ s ≤ t− 1, we have

E
(
y1,isu

f
1,it

)
= 0, E

(
y2,isu

f
1,it

)
= 0.

Let
zi,t−1 = (y1,i0, y2,i0, . . . , y1,it−1, y2,it−1)′ . (7)

Then zi,t−1 are orthogonal to the transformed error u
f
1,it in (6) . Also, under Assumption 2, zi,t−1

are correlated with the transformed regressors yf2,it and y
f
1i,t−1. In this paper, we consider zi,t−1 in

(7) as IVs for model (6).
An alternative transformation widely used in practice is to take the first time difference (FD)

(e.g., Anderson and Hsiao (1981, 1982) and Arellano and Bond (1991)). Denote ∆ to be the first
difference of time series, such that ∆yit = yit − yit−1, for example. Then, the first equation of (1)
becomes

∆y1,it = γ∆y1,it−1 + β∆y2,it + ∆u1,it, i = 1, . . . , N, t = 2, . . . , T. (8)

The transformed error, ∆u1,it, follows a first order moving average process. However, for 0 ≤ s ≤
t− 2, we have

E (y1,is∆u1,it) = 0, E (y2,is∆u1,it) = 0.

From this, we choose
zi,t−2 = (y1,i0, y2,i0, . . . , y1,it−2, y2,it−2)′ , (9)

as legitimate IVs for model (8).
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The difference between FOD and FD is that the error in (6) is i.i.d over i and t, but the error in
(8) follows a first order moving average process. Moreover, (6) uses (y1,i0, y2,i0, . . . , y1,it−1, y2,it−1)
as instruments and (8) uses (y1,i0, y2,i0, . . . , y1,it−2, y2,it−2) as instruments.

We will show that the Alvarez and Arellano (2003) type GMM estimator using the FOD or FD
transformation is inconsistent if T

N → c 6= 0 as N →∞. It is consistent and asymptotically biased
if4

T 3

N
→ κ 6= 0 <∞ as (N,T )→∞. (10)

Condition (10) is also a crucial condition to establish the asymptotic unbiasedness of the JIVE to
be discussed later.

3 GMM estimators and their asymptotics

Based on the instrument sets (7) and (9) , we consider two types of GMM estimators for the first
equation of model (1). The first one is the GMM estimator based on the FOD of model (6) (Alvarez
and Arellano (2003), Akashi and Kunitomo (2012))

θ̂
FOD
GMM =

(
T−1∑
t=1

Yf ′
t−1·tPt−1Y

f
t−1·t

)−1 T−1∑
t=1

Yf ′
t−1·tPt−1y

f
1,t, (11)

where θ = (γ, β)′, Yf
t−1·t =

(
yf1,t−1,y

f
2,t

)
and Pt−1 = Zt−1

(
Z′t−1Zt−1

)−1
Z′t−1 with Zt−1 =

(y1,0,y2,0, . . . ,y1,t−1,y2,t−1) and

yf1,t−1 =
(
yf1,1t−1, . . . , y

f
1,Nt−1

)′
,yf2,t =

(
yf2,1t, . . . , y

f
2,Nt

)′
,

y1,t−1 = (y1,1t−1, . . . , y1,Nt−1)′ ,y2,t−1 = (y2,1t−1, . . . , y2,Nt−1)′ .

The asymptotic distribution of the GMM based on the FD in model (8) is diffi cult to derive
because it involves the inverse of a (T − 1) × (T − 1) covariance matrix of a first order moving
average process. Therefore, instead of considering the Arellano-Bond type GMM estimator for FD
model (8), we consider the Alvarez and Arellano (2003) "crude GMM estimator",5

θ̂
FD
GMM =

(
T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t

)−1 T∑
t=2

∆Y′t−1·tPt−2∆y1,t, (12)

where∆Yt−1·t = (∆y1,t−1,∆y2,t) andPt−2 = Zt−2

(
Z′t−2Zt−2

)−1
Z′t−2 with Zt−2 = (y1,0,y2,0, . . . ,y1,t−2,y2,t−2)

and

∆y1,t−1 = (∆y1,1t−1, . . . ,∆y1,Nt−1)′ ,∆y1,t = (∆y1,1t, . . . ,∆y1,Nt)
′ ,∆y2,t = (∆y2,1t, . . . ,∆y2,Nt)

′ .

4Similar restriction has also been imposed by Akashi and Kunitomo (2012) and Lee et al (2015).
5Note that the crude GMM is not the Arellano-Bond type GMM (Arellano and Bond (1991)) which takes into

account the first order dependence of transformed errors (e.g., Hsiao and Zhang (2015)).
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3.1 Asymptotics for GMM estimator based on FOD

Although (11) is of the same form as the single equation GMM estimator of the Alvarez and
Arellano (2003), there is a fundamental difference between the two. The single equation dynamic
panel data model assumes all the regressors are either predetermined or strictly exogenous (with
respect to uit). On the other hand, the regressor for the single equation GMM estimator of (1) or
(2) could also consist of other joint dependent variables that are correlated with the error in the
equation (here, y2,it and u1,it). When T is fixed, and N is large, both types of GMM estimators are
consistent and asymptotically normally distributed. When T is also large, but T

N → c 6= 0 <∞ as
N →∞, the single equation GMM estimator remains consistent but asymptotically biased of order√
c (Alvarez and Arellano (2003)). However, for GMM estimator of panel dynamic simultaneous

equations model, if T
N → c 6= 0 < ∞ as (N,T ) → ∞, the GMM estimator is no longer consistent.

We need N to be much larger than T to obtain consistency of this GMM estimator.
For the GMM estimator based on FOD (11), Section (A.2) in the appendix shows that

Theorem 1 Under Assumptions 1-4 and the condition (10), the GMM estimator (11) is consistent
and asymptotically distributed as

√
NT

(
θ̂
FOD
GMM − θ

)
→d N

(
bf0 , σ

2
u,1

(
D′Γ0D

)−1
)
, (13)

where

bf0 = −
(
D′Γ0D

)−1
(

0
σu,12

)√
κ,

denotes the asymptotic bias and

D =

(
1 βγ22

0 γ22

)
,Γ0 =

∞∑
s=0

ΠsB−1ΩuB
′−1Πs′,

with Π and B are given in (3) and κ is given in (10).

Remark 1 It follows from Theorem 1 that if κ = 0, the FOD GMM estimator θ̂
FOD
GMM is asymp-

totically unbiased. However, if κ 6= 0, the θ̂
FOD
GMM is asymptotically biased of order

√
T 3

N , which is

the same order as in Akashi and Kunitomo (2012). If T
N → c 6= 0 as (N,T ) → ∞ considered in

Alvarez and Arellano (2003), the GMM estimator (11) is inconsistent, i.e.,

θ̂
FOD
GMM − θ = Op

(
T

N

)
.

3.2 Asymptotics for crude GMM estimator based on FD

For the crude GMM estimator (12), it is shown in Section (A.3) of the appendix that

Theorem 2 Under Assumptions 1-4 and the restriction (10), the crude GMM estimator (12) is
asymptotically distributed as

√
NT

(
θ̂
FD
GMM − θ

)
→d N

(
b∆

0 , σ
2
u,1D

′−1
(
I2 −Π′

)−1 [
Γ−1

0 (I2 −Π) +
(
I2 −Π′

)
Γ−1

0

]
(I2 −Π)−1 D−1

)
.

(14)
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where b∆
0 = [D′ (I2 −Π) Γ0 (I2 −Π′) D]−1 b̃0,

b̃0 = −
[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ. (15)

and D, Π and Γ0 are defined in Theorem 1.

Remark 2 As in the FOD case, the crude GMM estimator (12) is inconsistent when T
N → c 6= 0.

Even if T
N → 0 as (N,T )→∞ with T 3

N → κ 6= 0, it is asymptotically biased of order
√

T 3

N .

Remark 3 Due to the complicated variance-covariance matrix of the crude GMM based on FD,
it is diffi cult to directly compare the asymptotic effi ciency for these two GMM estimators based
on FOD (estimator (11)) and FD (estimator (12)) for the panel dynamic simultaneous equations
models. We note that the crude GMM based on FD (estimator (12)) is not a GMM estimator, and
it is expected to have a larger covariance matrix than the GMM based on FOD. Since GMM based
FOD or FD uses identical number of moment conditions with almost identical IVs, we expect that
(12) is not as effi cient as (11). In a similar context, Lee et al (2015) find that GMM based on FOD
is asymptotically more effi cient than the crude GMM based on FD. Moreover, from the simulation
below, we observe that the iqr (inter-quantile range) of GMM based on FOD is much smaller than
that of the crude GMM based FD. Thus, for models of the form (1), we conjecture that the GMM
based on FOD is more effi cient than the crude GMM based on FD.

Remark 4 As noted by a referee, the GMM estimator of the reduced form parameters, Π, are
consistent if T

N → c 6= 0 < 1
2 as N → ∞ by a straightforward generalization of Alvarez and

Arellano (2003). However, the structural form parameters could be ratios of the reduced form
parameters (e.g., here β = π12

π22
). Moreover, if a structural equation is over-identified, there is an

issue of how to account for the complicated nonlinear restrictions in obtaining effi cient estimators
of structural form parameters (e.g., Intrilgator et al (1996)). These issues are complicated and
deserve an independent study.

4 JIVE and its asymptotics

We note that the GMM estimator (11) or (12) can also be viewed as finding optimal instruments

Wit or W̃it that satisfy E
(
Witu

f
1,it

)
= 0 and E

(
W̃it∆u1,it

)
= 0. In sample analogue, we have

1

N (T − 1)

T−1∑
t=1

N∑
i=1

Witu
f
1,it = 0, (16)

or
1

N (T − 1)

T∑
t=2

N∑
i=1

W̃it∆u1,it = 0, (17)

where

Wit = z′it−1

(
Z′t−1Zt−1

)−1

 N∑
j=1

zjt−1y
f ′
j,t−1

 ,W̃it = z′it−2

(
Z′t−2Zt−2

)−1

 N∑
j=1

zjt−2∆y′j,t−1

 ,
(18)

7



with yf ′j,t−1 =
(
yf1,it−1, y

f
2,it

)
and ∆y′j,t−1 = (∆y1,it−1,∆y2,it) .

Under the assumption that uit are i.i.d over i, and t, so are ufit, therefore,

E

 N∑
j=1

zjt−1y
f ′
j,t−1

uf1,it

 = E
(
zit−1y

f ′
i,t−1u

f
1,it

)
6= 0, (19)

or

E

 N∑
j=1

zjt−2∆y′j,t−1

∆u1,it

 = E
(
zit−2∆y′i,t−1∆u1,it

)
6= 0. (20)

Equation (19) or (20) is the source of asymptotic bias for the GMM estimator (11) or (12).
However, if we remove the ith individual’s observation in the construction of Wit or W̃it, so

W∗
it = z′it−1

(
Z′t−1Zt−1

)−1

 N∑
j 6=i

zjt−1y
f ′
j,t−1

 , W̃∗
it = z′it−2

(
Z′t−2Zt−2

)−1

 N∑
j 6=i

zjt−2∆y′j,t−1

 ,
(21)

then
E
(
W∗

itu
f
1,it

)
= 0 or E

(
W̃∗

it∆u1,it

)
= 0. (22)

Thus, using W∗
it or W̃∗

it as IV removes the source of asymptotic bias. That’s how JIVE corrects
the asymptotic bias of GMM estimator.

4.1 JIVE based on FOD

The JIVE for (11) is defined as

θ̂
FOD
JIV E =

T−1∑
t=1

 N∑
j=1

∑
i 6=j

(
yf ′i,t−1·tz

′
it−1

) (
Z′t−1Zt−1

)−1
zjt−1y

f
j,t−1·t

−1

(23)

×
T−1∑
t=1

 N∑
j=1

∑
i 6=j

(
yf ′i,t−1·tz

′
it−1

) (
Z′t−1Zt−1

)−1
zjt−1y

f
1,jt

 ,
where yfi,t−1·t =

(
yf1,it−1, y

f
2,it

)
and yfj,t−1·t =

(
yf1,jt−1, y

f
2,jt

)
.

Remark 5 When T − 1 = 1, the above JIVE (23) is identical to the JIVE2 proposed in Angrist et
al (1999, P61) for cross-sectional models.

For this JIVE (23), it is shown in the Section (A.4) of the appendix that

Theorem 3 Under Assumptions 1-4 and the restriction (10), the JIVE estimator (23) is asymp-
totically distributed as

√
NT

(
θ̂
FOD
JIV E − θ

)
→d N

(
0, σ2

u,1D
′−1Γ−1

0 D−1
)
, (24)

where D, Π and Γ0 are defined in Theorem 1.
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Remark 6 As can be seen from (24), the JIVE of (1) using FOD is asymptotically unbiased.
Additionally, the JIVE is as effi cient as the original GMM estimator (11), i.e., there is no effi ciency
loss for the JIVE.6

Remark 7 As pointed out by a referee, the purpose of this JIVE is to construct an instrument for
observation (i, t) which does not involve any observation dependent with (i, t) . If there is spatial-
temporal dependence in the observation, then the JIVE bias reduction property would vanish or
diminish.7

Remark 8 As noted by a referee that one of the advantage of JIVE is its ability to handle het-
eroskedastic disturbance. This is indeed the case because the construction of JIVE for the (i, t)
observation excludes the use of ith individual observations. However, the asymptotic covariance
matrix of the JIVE estimator no longer possesses the neat form as in (24).8

Standard Error Computation
Under Assumption 1 of homoskedasticity, given that the JIVE estimators are consistent and

asymptotically unbiased, a consistent estimator for the variance of θ̂
FOD
JIV E =

(
β̂
FOD

JIV E , γ̂
FOD
JIV E

)′
can

be obtained by replacing σ2
u,1, D and Γ0 in (24) by their estimates σ̂2

u,1, D̂ and Γ̂0, respectively.
Let

σ̂2
u,1 =

1

NT

T−1∑
t=1

N∑
i=1

(
ûf1,it

)2
, σ̂2

u,2 =
1

NT

T−1∑
t=1

N∑
i=1

(
ûf2,it

)2
and σ̂u,12 =

1

NT

T−1∑
t=1

N∑
i=1

ûf1,itû
f
2,it,

with ûf1,it = yf1,it − β̂
FOD

JIV Ey
f
2,it − γ̂FODJIV Ey

f
1,it−1 and û

f
2,it = yf2,it − γ̂21y2,it−1 − γ̂22y2,it−1 given the

estimators of γ21 and γ22, we have

D̂ =

(
1 β̂γ̂22

0 γ̂22

)
, Π̂ =

(
π̂11 π̂12

π̂21 π̂22

)
=

(
γ̂ + β̂γ̂21 β̂γ̂22

γ̂21 γ̂22

)
,

B̂ =

(
1 β̂
0 1

)
, Γ̂0 =

∞∑
s=0

Π̂sB̂−1Ω̂uB̂
′−1Π̂s′,

by using the above estimators σ̂2
u,1, σ̂

2
u,2 and σ̂u,12.

4.2 JIVE based on FD

For model (8) based on FD, we can define the JIVE as

θ̂
FD
JIV E =

 T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆yj,t−1·t

−1

(25)

×
T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆y1,jt,

6 In a different context, Hahn and Newey (2004) have also established that jackknife correction does not affect the
asymptotic variance.

7When u1,it is serially correlated, FOD loses its attraction. It does not yield i.i.d errors. Also, unless the pattern
of serial correlation is known, lagged variables may not be legitimate IVs. Neither is (11) a GMM estimator. For the
application of JIVE in a simple univariate dynamic panel model with errors following a first order moving average
process, see Lee at al (2015).

8Under certain assumptions, one can show that the GMM is asymptotically biased of order
√

T3

N
. However, the

exact bias is complicated and depends on σu,12i where σu,12i = Cov (u1,it, u2,it) (i = 1, . . . , N) .
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where ∆yi,t−1·t = (∆y1,it−1,∆y2,it) and ∆yj,t−1·t = (∆y1,jt−1,∆y2,jt) .
For this JIVE (25), it is shown in the Section (A.5) of the appendix that

Theorem 4 Under Assumptions 1-4 and the restriction (10), the JIVE estimator (25) is asymp-
totically distributed as
√
NT

(
θ̂
FD
JIV E − θ

)
→d N

(
0, σ2

u,1D
′−1
(
I2 −Π′

)−1 [
Γ−1

0 (I2 −Π) +
(
I2 −Π′

)
Γ−1

0

]
(I2 −Π)−1 D−1

)
,

(26)
where D, Π and Γ0 are defined in Theorem 1.

Remark 9 As can be seen from (26), the JIVE indeed corrects the asymptotic bias of the crude
GMM estimator of (1) using FD, as long as T 3/N <∞ as N →∞ despite the number of instru-
ments increasing with T.

Standard Error Computation
The standard error computation for JIVE based on FD is similar to the case where FOD is used.

The only difference is in the estimation of σ2
u,1, σ

2
u,2 and σu,12, which are based on the residuals

from the JIVE using FD. For instance, we can estimate σ2
u,1 by σ̂

2
u,1 = 1

2
1
NT

∑T
t=2

∑N
i=1 (∆û1,it)

2

where ∆û1,it = ∆y1,it− β̂
FD

JIV E∆y2,it− γ̂FDJIV E∆y1,it−1. Similarly for the estimation of σ2
u,2 and σu,12,

and estimation of the remaining terms in (26).

5 Monte Carlo Simulations

In this section, we study the finite sample properties of the GMM and JIVE estimators considered
above. The data generating process is

y1,it = γy1,it−1 + βy2,it + α1,i + u1,it,

y2,it = γ21y1,it−1 + γ22y1,it−1 + α2,i + u2,it,

with γ = 0.5, β = 0.5, γ21 = 0.2, γ22 = 0.6.9 For the individual-specific effects, we assume
α1,i ∼ IIDN (0, 1) and α2,i ∼ IIDN (0, 2) for i = 1, 2, . . . , N. For the error terms, we assume that(

u1,it

u2,it

)
∼iid N

(
0,

[
1 0.5

0.5 1

])
,

for i = 1, . . . , N, t = 1, . . . , T. Also, (α1,i, α2,i)
′ and (u1,it, u2,it)

′ are independent over i and t. We
consider different combinations of N,T by letting N = 1000, 2000 and 5000, and T = 10, 25 and
50. We generate T + 100 observations, and the first 100 observations are discarded. The number
of replication is set at 1000 times.

We consider the GMM estimation as well as the JIVE proposed in the paper to estimate γ and
β in the above DGP. For comparison, we also consider the LIML estimation considered by Akashi
and Kunitomo (2012)10, the regularized JIVE (RJIVE) proposed by Hansen and Kozbur (2014)11.

9Under this specification, we have Π = B−1
(

γ 0
γ21 γ22

)
=

(
0.6 0.3
0.2 0.6

)
, whose eigenvalues are given by

0.8449 and 0.3551, so Assumption 2 is satisfied.
10As shown by Akashi and Kunitomo (2012, P170), the LIML estimation of model (1) is asymptotically biased of

order
√

T
N
.

11We follow Hansen and Kozbur (2014, P297) to choose the penalty matrix in the RJIVE, i.e., we set the penalty
to
√
K where K is the number of instruments used in the estimation.
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Because our simulated model is exactly identified, unique estimates of β and γ can be obtained
from β = π12

π22
and γ̂ = π11 − βπ21. We also consider a referee’s suggestion by first estimating Π by

the GMM estimation based on the reduced form using all available instruments, and then solve for
β and γ12. To eliminate α1i, we use both FOD and FD transformations. We calculate the mean
and bias of the estimates, iqr (inter-quantile range), and size for these estimators. Our estimation
results are summarized in the tables 1-4.

Several interesting findings can be observed from the simulation results. First, we note that
there is significant bias for GMM estimators of both γ and β using either FOD or FD transforma-
tion to eliminate the individual effects. Moreover, the size is severely distorted for GMM estimators
and the coverage ratio is quite poor. On the other hand, if one considers GMM estimator based
on the reduced form of the simultaneous equations models, the GMM estimator based on FOD
transformation appears to perform better in the exactly identified case and has smaller size distor-
tion than the GMM based on FOD or FD (Table 1-2). However, the GMM estimator based on the
reduced form using FD transformation still shows significant bias and distorted size (Table 3-4).
Second, for the JIVE for both γ and β, the bias is almost negligible in both FOD and FD cases,
which suggests that the JIVE indeed corrects the bias of GMM estimators as desired. Moreover,
the actual size for JIVE of γ and β is very close to the nominal value of 5% significance level.
Alternatively, for the JIVE, one can consider the regularized JIVE by Hansen and Kozbur (2014),
which is also found to be asymptotically unbiased and has correct size.13 One can also observe
that the iqr (inter quantile range) of JIVE estimators are quite close to the GMM estimators for
large N. For example, when N = 5000, the iqr of JIVE for both γ and β are quite close to the iqr
of GMM estimators in the simulation, which is evident of the fact that JIVE doesn’t inflate the
variance as shown in the paper. Finally, if one considers LIML of Akashi and Kunitomo (2012), it
is observed that LIML estimation is indeed asymptotically unbiased for both γ and β using either
FOD or FD transformation, and has correct size. This is because LIML is asymptotically biased of

order
√

T
N , while in our simulation, we have

T
N → 0, which in turn leads LIML to be asymptotically

unbiased.14

Finally, for comparison, we draw the empirical densities of
√
NT (γ̂ − γ) and

√
NT

(
β̂ − β

)
in

Fig 1 and 2, respectively, of the GMM estimators and the JIVE using FOD and FD transformation
for the DGP when N = 2000 and T = 25. It is clear that the empirical densities of JIVE and LIML
estimators are centered at zero and are normally distributed, while the empirical densities of GMM
estimators are not centered at zero. In all, the findings from simulation confirms our theoretical
findings in the paper.

12By following Alvarez and Arellano (2003), it can be shown that the GMM using FOD is consistent and asymptot-
ically normal as long as T

N
→ c as (N,T ) →∞, but the GMM using FD is inconsistent if T

N
→ c and asymptotically

biased of order
√

T3

N
. See Remark 4 for more discussion on GMM based on reduced form.

13 It should be noted that even if regularized JIVE behaves similarly to the JIVE proposed in this paper, it is
quite computational extensive, and it becomes more computationally demanding if T is large. For example, for the
simulation when N = 1000 and T = 25 with 1000 replications, the cpu time for the JIVE and regularized JIVE are
17491s and 28293s, respectively. When T = 50, it takes days for regularized JIVE to finish.
14Even if the LIML behaves similarly to JIVE in our designs, the JIVE is relatively easy to implement, while

LIML requires extra work to obtain the estimators, such as solving the characteristic function to get the smallest
root (Akashi and Kunitomo (2012, P169)).
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Fig 1. Empirical densities of GMM and JIVE estimators for
√
NT (γ̂ − γ) when N = 2000 and T = 25
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Fig 2. Empirical densities of GMM and JIVE estimators for
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NT
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when N = 2000 and T = 25
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6 Conclusion

In this paper we investigate the statistical properties of the GMM estimators for linear panel
dynamic simultaneous equations models. Using the alternative asymptotics (N,T ) → ∞ with
T 3

N → κ 6= 0 <∞, we characterize the many IVs bias of the GMM estimators. To reduce the
bias of the GMM estimators, we consider the JIVE and establish its asymptotics. Monte Carlo
simulations show that the JIVE estimator can eliminate the asymptotic bias, hence allowing us to
obtain valid statistical inference. It would be very interesting to extend the above JIVE procedure
to models with heteroskedastic errors, as in Chao et al (2012); and to models with spatio-temporal
dependence, as in Lee and Yu (2014). We leave these topics for future research.
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Appendix: Mathematical Proofs

This appendix includes the mathematical proofs that are omitted in the main paper. In what
follows, we shall let ‖A‖ =

√
tr (AA′) denote the Frobenius norm, ‖A‖0 = λmax (A) , where λmax (A)

and λmin (A) denote the maximum and minimum eigenvalues of A, respectively. We also let C denote
a generic finite constant, whose value may vary case by case.

A.1 Useful Lemmas

Before we introduce the lemmas, we notice that for the reduced form (2), we have

yit = Πyit−1 + ξi + vit,

then
yit = (I2 −Π)−1 ξi + (I2 −ΠL)−1 vit,

where L denotes the lag operator. Consequently, we can decompose yit as

yit = (I2 −Π)−1 ξi + wit, (A.1)

where
wit = (w1,it, w2,it)

′ = Πwit−1 + vit (A.2)

and wit is a stationary VAR(1) process under Assumption 2.
As a result, the forward demeaning transformation for (A.1) is given by

yfit = wf
it = Πwf

it−1 + vfit, (A.3)

and

wf
it = ct

(
wit −

1

T − t

T∑
s=t+1

wis

)
= ctwit − ctw̄i,t+1T ,

where

w̄i,t+1T =
1

T − t

T∑
s=t+1

wis.

Similarly, the first difference transformation for (A.1) is given by

∆yit = ∆wit = Π∆wit−1 + ∆vit. (A.4)

Now let’s turn to the lemmas. Lemma (A.1) to lemma (A.4) are used to derive the results of
lemma (A.5) to lemma (A.8), and the latter are used to establish the theorems in the paper.

Lemma A.1 Let dt and ds be N × 1 vectors containing the diagonal elements of Pt and Ps,
respectively, so that tr(Pt) = d′t1N = 2t and tr(Ps) = d′s1N = 2s, and d′tds ≤ 2 min (t, s) , then
under assumptions 1-4, for l ≥ r > t, p ≥ q > s and t ≥ s

Cov
(
u′(a),lPtu(b),r,u

′
(a),pPsu(b),q

)
=


(
m(3) +m(2)

)
2s+m(0)E (d′tds) if l = r = p = q

E
(
u2

(a),itu(b),it

)
E
(
d′tPsu(b),q

)
if l = r = p 6= q < t

m(3)2s if l = p 6= r = q
0 otherwise
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and
∣∣E (d′tPsu(b),q

)∣∣ ≤ 2
[
stE

(
u2

(b),it

)]1/2
, and

m(1) = E
[
u2

(a),itu
2
(b),it

]
,m(2) =

(
E
[
u(a),itu(b),it

])2
,

m(3) = E
[
u2

(a),it

]
E
[
u2

(b),it

]
,m(0) = m(1) − 2m(2) −m(3),

and
(
u(a),t,u(b),t

)
takes any pair of N × 1 vectors from random variables ug,it (g = 1, 2) .

Proof can be found in Akashi and Kunitomo (2012).

Lemma A.2 Under Assumptions 1-2, as well as the condition (10), then the following hold for all
t = 1, . . . , T − 1.

(a)
∥∥∥B̃Nt −BNt∥∥∥2

= Op

(
t2

N

)
;

(b) λmin

(
B̃Nt

)
≥ C > 0;

(c) λmin (BNt) ≥ C > 0;
where BNt = 1

N

∑N
i=1 zitz

′
it, B̃Nt = 1

N

∑N
i=1E (zitz

′
it) with zit = (y1,i0, y2,i0, . . . , y1,it, y2,it)

′ .

Proof can be found in Lemma A.4 of Lee et al (2015).

Lemma A.3 Under Assumptions 1-4, as (N,T )→∞, we have

1

NT

T−1∑
t=1

W′
t−1Pt−1Wt−1 =

1

NT

T∑
t=2

W′
t−1Wt−1 + op (1)

→ pΓ0,

where Wt−1 = (w1t, . . . ,wNt)
′ and Γ0 = E (witw

′
it) =

∑∞
i=0 ΠiΩvΠ

i′ =
∑∞

s=0 ΠsB−1ΩuB
′−1Πs′.

Proof can be found in Akashi and Kunitomo (2012).

Lemma A.4 Under Assumptions 1-4 as well as the restriction (10), as (N,T )→∞, we have
(a):

1

NT

T∑
t=2

∆u′1,tPt−2∆u1,t = op (1) ,

the above results still hold if we replace u1,t by u2,t, v1,t or v2,t.
(b):

1√
NT

T∑
t=1

u′1,tPt−1u1,t →p σ
2
u,1

√
κ,

similar results can be derived if we replace u1,t by u2,t, v1,t or v2,t
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Proof. (a) In order to show this, we first notice that

1

NT

T∑
t=2

E
(
∆u′1,tPt−2∆u1,t

)
=

1

NT

T∑
t=2

tr
(
E
(
∆u′1,tPt−2∆u1,t

))
=

1

NT

T∑
t=2

E
(
tr
(
∆u′1,tPt−2∆u1,t

))
=

1

NT

T∑
t=2

E
(
tr
(
Pt−2∆u1,t∆u′1,t

))
=

1

NT

T∑
t=2

tr
(
E
(
Pt−2∆u1,t∆u′1,t

))
=

1

NT

T∑
t=2

tr
(
E
(
Pt−2Et−1

(
∆u1,t∆u′1,t

)))
=

2σ2
u,1

NT

T∑
t=2

tr (E (Pt−2))

=
2σ2

u,1

NT

T∑
t=2

tr (E (Pt−2)) =
2σ2

u,1

NT

T∑
t=2

E (tr (Pt−2))

=
2σ2

u,1

NT

T∑
t=2

2 (t− 1) = O

(
T

N

)
= o (1) ,

under restriction (10). Also, we have

V ar

(
1

NT

T∑
t=2

∆u′1,tPt−2∆u1,t

)

=
1

N2T 2

T∑
s,t=2

E
(
∆u′1,tPt−2∆u1,t∆u′1,sPs−2∆u1,s

)
=

1

N2T 2

T∑
t=2

E
(
∆u′1,tPt−2∆u1,t∆u′1,tPt−2∆u1,t

)
+

2

N2T 2

∑
s<t

E
(
∆u′1,tPt−2∆u1,t∆u′1,sPs−2∆u1,s

)
,(A.5)

where the first term can be shown that

1

N2T 2

T∑
t=2

E
(
∆u′1,tPt−2∆u1,t∆u′1,tPt−2∆u1,t

)
=

C

N2T 2

T∑
t=2

t2 + o (1)

= o (1) ,

by using the results from lemma (A.1). Similarly, for the second term of (A.5), we have

2

N2T 2

∑
s<t

E
(
∆u′1,tPt−2∆u1,t∆u′1,sPs−2∆u1,s

)
=

C

N2T 2

T∑
t=2

t

= o (1) .

Consequently, we have

V ar

(
1

NT

T∑
t=2

∆u′1,tPt−2∆u1,t

)
= o (1) ,

as (N,T )→∞, which in turn gives

1

NT

T∑
t=2

∆u′1,tPt−2∆u1,t = op (1) ,
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as required.
(b) For this result, it is obvious that

1√
NT

T∑
t=1

E
(
u′1,tPt−1u1,t

)
= σ2

u,1

√
κ+ o (1) ,

by following the above derivation. For its variance, we notice that

V ar

(
1√
NT

T∑
t=1

u′1,tPt−1u1,t

)

= E

(
1√
NT

T∑
t=1

u′1,tPt−1u1,t

)2

−
[

1√
NT

T∑
t=1

E
(
u′1,tPt−1u1,t

)]2

=
1

NT

T∑
t=1

E
(
u′1,tPt−1u1,tu

′
1,tPt−1u1,t

)
+

2

NT

∑
s<t

E
(
u′1,sPs−1u1,su

′
1,tPt−1u1,t

)
− σ4

u,1κ+ o (1)

= o (1) ,

since

1

NT

T∑
t=1

E
(
u′1,tPt−1u1,tu

′
1,tPt−1u1,t

)
=

1

NT

T∑
t=1

Cov
(
u′1,tPt−1u1,t,u

′
1,tPt−1u1,t

)
+

1

NT

T∑
t=1

E
(
u′1,tPt−1u1,t

)
E
(
u′1,tPt−1u1,t

)
=

C

NT

T∑
t=2

t+
1

NT

T∑
t=2

4σ4
u,1 (t− 1)2

= o (1) ,

by using the results of lemma (A.1). Similarly,

2

NT

∑
s<t

E
(
u′1,sPs−1u1,su

′
1,tPt−1u1,t

)
=

2

NT

∑
s<t

E
(
u′1,sPs−1u1,sEs

(
u′1,tPt−1u1,t

))
=

8σ4
u,1

NT

∑
s<t

(t− 1) (s− 1)

=
4σ4

u,1

NT

T∑
t=3

(t− 1)3 + o (1)

= σ4
u,1κ+ o (1) ,

consequently, we have

V ar

(
1√
NT

T∑
t=1

u′1,tPt−1u1,t

)
→ 0,

as (N,T )→∞, which gives

1√
NT

T∑
t=1

u′1,tPt−1u1,t →p σ
2
u,1

√
κ,
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as required.
The following two lemmas provide the theoretical results needed for the GMM estimation based

on FOD and FD.

Lemma A.5 Under Assumptions 1-4, as well as the condition (10), for the FOD transformed
model (6), as (N,T )→∞, we have

(a)

1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t →p D′Γ0D,

where Γ0 =
∑∞

i=0 ΠiB−1ΩuB
′−1Πi′ and

D =

(
1 π21

0 π22

)
=

(
1 βγ22

0 γ22

)
.

(b)

1√
NT

T−1∑
t=1

Y
(f)′
t−1·tPt−1u

f
1,t →d N

(
0, σ2

u,1D
′Γ0D

)
−
(

0
σu,12

)√
κ.

Proof. (a) We note that

1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t =

1

NT

T−1∑
t=1

π2
t

(
Wt−1·t − W̄t−1·t

)′
Pt−1

(
Wt−1·t − W̄t−1·t

)
=

1

NT

T−1∑
t=1

W′
t−1·tPt−1Wt−1·t −

1

NT

T−1∑
t=1

W′
t−1·tPt−1W̄t−1·t

− 1

NT

T−1∑
t=1

W̄′
t−1·tPt−1Wt−1·t +

1

NT

T−1∑
t=1

W̄′
t−1·tPt−1W̄t−1·t + op (1) ,

where Wt−1·t = (w1,t−1,w2,t) with wj,t = (wj,1t, wj,2t, . . . , wj,Nt)
′ for j = 1, 2,

W̄t−1·t =
(

1
T−t+1

∑T
s=t w1,t,

1
T−t

∑T
s=t+1 w2,t

)
= (w̄1,t−1T , w̄2,tT ) and wit is defined in (A.2).

It is obvious that

Wt−1·t = (w1,t−1,w2,t) = (w1,t−1, π21w1,t−1 + π22w2,t−1 + v2,t)

= Wt−1D + (0,v2,t) , (A.6)

where

D =

(
1 π21

0 π22

)
=

(
1 βγ22

0 γ22

)
,

and

W̄t−1·t = (w̄1,t−1T , w̄2,tT ) = (w̄1,t−1T , π21w̄1,t−1T + π22w̄2,t−1T + v̄2,tT )

= W̄t−1TD + (0, v̄2,tT ) , (A.7)
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Then substituting (A.6) and (A.7) yields

1

NT

T−1∑
t=1

W′
t−1·tPt−1W̄t−1·t =

1

NT

T−1∑
t=1

[
D′W′

t−1 + (0,v2,t)
′]Pt−1

(
W̄t−1TD + (0, v̄2,tT )

)
=

1

NT

T−1∑
t=1

D′W′
t−1Pt−1W̄t−1TD +

1

NT

T−1∑
t=1

D′W′
t−1Pt−1 (0, v̄2,tT )

+
1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1 (0, v̄2,tT ) +

1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1 (0, v̄2,tT ) ,

and each term can be shown to be op (1) by using the results of part (a) of lemma (A.4), for instance,
the first term is given by

1

NT

T−1∑
t=1

D′W′
t−1Pt−1W̄t−1TD = D′

(
1

NT

T−1∑
t=1

1

T − t+ 1

T∑
s=t

W′
t−1Pt−1Ws

)
D

= D′

(
1

NT

T−1∑
t=1

W′
t−1Pt−1Wt

1

T − t+ 1

T∑
s=t

Π′s−t

)
D + op (1)

= Op

(
log T

T

)
= op (1) ,

as T →∞. Similarly, all other terms can be shown to be op (1) , which yields

1

NT

T−1∑
t=1

W′
t−1·tPt−1W̄t−1·t = op (1) .

By using the same argument, we can show that

1

NT

T−1∑
t=1

W̄′
t−1·tPt−1Wt−1·t = op (1) ,

1

NT

T−1∑
t=1

W̄′
t−1·tPt−1W̄t−1·t = op (1) .
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Combining the above yields

1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t =

1

NT

T−1∑
t=1

W′
t−1·tPt−1Wt−1·t + op (1)

=
1

NT

T−1∑
t=1

[
D′W′

t−1 + (0,v2,t)
′]Pt−1 [Wt−1D + (0,v2,t)] + op (1)

=
1

NT

T−1∑
t=1

D′W′
t−1Pt−1Wt−1D +

1

NT

T−1∑
t=1

D′W′
t−1Pt−1 (0,v2,t)

+
1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1Wt−1D +

1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1 (0,v2,t) + op (1)

=
1

NT

T−1∑
t=1

D′W′
t−1Pt−1Wt−1D + op (1)

→ pD
′Γ0D,

by using the result of lemma (A.3) and the fact that

1

NT

T−1∑
t=1

D′W′
t−1Pt−1 (0,v2,t) = op (1) ,

1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1Wt−1D = op (1) ,

1

NT

T−1∑
t=1

(0,v2,t)
′Pt−1 (0,v2,t) = op (1) ,

which holds since, for example, E
[

1
NT

∑T−1
t=1 D′W′

t−1Pt−1 (0,v2,t)
]

= 0, and

E

( 1

NT

T−1∑
t=1

D′W′
t−1Pt−1 (0,v2,t)

)(
1

NT

T−1∑
t=1

D′W′
t−1Pt−1 (0,v2,t)

)′
=

1

N2T 2

T−1∑
s,t=1

D′E
(
W′

t−1Pt−1 (0,v2,t) (0,v2,s)
′Ps−1Ws−1

)
D

=
1

N2T 2

T−1∑
t=1

D′E
(
W′

t−1Pt−1 (0,v2,t) (0,v2,t)
′Pt−1Wt−1

)
D

≤ C

N2T 2

T−1∑
t=1

D′E
(
W′

t−1Pt−1Wt−1

)
D = Op

(
1

NT

)
.

A similar argument can be applied to all other remaining terms.
To summarize, as (N,T )→∞, we obtain

1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t →p D′Γ0D, (A.8)

as required.
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(b) By using the result (A.6) and (A.7), we obtain

1√
NT

T−1∑
t=1

Y
(f)′
t−1·tPt−1u

f
1,t

=
1√
NT

T−1∑
t=1

W
(f)′
t−1·tPt−1u

f
1,t

=
1√
NT

T−1∑
t=1

[
Wt−1D + (0,v2,t)− W̄t−1TD− (0, v̄2,tT )

]′
Pt−1 (u1,t − ū1,tT ) + op (1)

=
1√
NT

T−1∑
t=1

D′W′
t−1Pt−1u1,t −

1√
NT

T−1∑
t=1

(0,v2,t)
′Pt−1u1,t + op (1) , (A.9)

where the last identity holds since all remaining terms can be shown to be op (1) . For instance, for
the term 1√

NT

∑T−1
t=1 D′W̄′

t−1TPt−1u1,t, we have

1√
NT

T−1∑
t=1

D′W̄′
t−1TPt−1u1,t = D′

[
1√
NT

T−1∑
t=1

1

T − t+ 1

T∑
s=t

W′
sPt−1Vt

]
B

(
0
1

)

= D′

[
1√
NT

T−1∑
t=1

1

T − t+ 1

T∑
s=t

Π′s−tV′tPt−1Vt

]
B

(
0
1

)
+ op (1)

= D′

[
1√
NT

T−1∑
t=1

1

T − t+ 1

T∑
s=t

Π′s−tV′tPt−1Vt

]
B

(
0
1

)
+ op (1)

= Op

√T (log T )2

N

 ,

which will be op (1) under alternative restriction (10). Similarly, we can show all other remaining
terms are op (1) .

For (A.9), it is obvious that the first term will contribute to the limiting distribution as (N,T )→
∞

1√
NT

T−1∑
t=1

D′W′
t−1Pt−1u1,t →d N

(
0, σ2

u,1D
′Γ0D

)
,

and the second term will contribute to the asymptotic bias under (10) with

1√
NT

T−1∑
t=1

(0,v2,t)
′Pt−1u1,t =

1√
NT

T−1∑
t=1

(
0

v′2,tPt−1u1,t

)
=

1√
NT

T−1∑
t=1

(
0

u′2,tPt−1u1,t

)
→ p

(
0

σu,12

)√
κ,

by using the results from part (b) of lemma (A.4). Combining these results yields

1√
NT

T−1∑
t=1

Y
(f)′
t−1·tPt−1u

f
1,t →d N

(
0, σ2

u,1D
′Γ0D

)
−
(

0
σu,12

)√
κ,

as (N,T )→∞ under alternative restriction (10).

26



Lemma A.6 Under Assumptions 1-4, as well as the condition (10), for the FD transformed model
(8), as (N,T )→∞, we have

(a)

1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t →p D′ (I2 −Π) Γ0

(
I2 −Π′

)
D

where D,Π and Γ0 are defined in lemma (A.5).
(b)

1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t → N
(
b̃0, σ

2
u,1D

′ (I2 −Π)
[
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

)] (
I2 −Π′

)
D
)
,

where

b̃0 = −
[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ.

Proof. (a) To show this, we first notice that

∆Yt−1·t = ∆Wt−1·t = (∆w1,t−1,∆w2,t) = (∆w1,t−1, π21∆w1,t−1 + π22∆w2,t−1 + ∆v2,t)

= (∆w1,t−1,∆w2,t−1) D + (0,∆v2,t)

= ∆Wt−1D + (0,∆v2,t) ,

where D is defined in lemma (A.5). Then

1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t

=
1

NT

T∑
t=2

D′ (Wt−1 −Wt−2)′Pt−2 (Wt−1 −Wt−2) D

+
1

NT

T∑
t=2

D′ (Wt−1 −Wt−2)′Pt−2 (0,∆v2,t) +
1

NT

T∑
t=2

(0,∆v2,t)
′Pt−2 (Wt−1 −Wt−2) D

+
1

NT

T∑
t=2

(0,∆v2,t)
′Pt−2 (0,∆v2,t)

=
1

NT

T∑
t=2

D′ (Wt−1 −Wt−2)′Pt−2 (Wt−1 −Wt−2) D + op (1) , (A.10)

with
1

NT

T∑
t=2

(0,∆v2,t)
′Pt−2 (0,∆v2,t) =

(
0

1
NT

∑T
t=2 ∆v′2,tPt−2∆v2,t

)
,

where it can be shown that

1

NT

T∑
t=2

(0,∆v2,t)
′Pt−2 (0,∆v2,t) = op (1) ,
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by using the results from lemma (A.4), and

1

NT

T∑
t=2

(Wt−1 −Wt−2)′Pt−2 (Wt−1 −Wt−2)

=
1

NT

T∑
t=2

W′
t−1Pt−2Wt−1 −

1

NT

T∑
t=2

W′
t−1Pt−2Wt−2 −

1

NT

T∑
t=2

W′
t−2Pt−2Wt−1

+
1

NT

T∑
t=2

W′
t−2Pt−2Wt−2

=
1

NT

T∑
t=2

(
ΠW′

t−2 + V′t−1

)
Pt−2

(
Wt−2Π′ + Vt−1

)
− 1

NT

T∑
t=2

(
ΠW′

t−2 + V′t−1

)
Pt−2Wt−2

− 1

NT

T∑
t=2

W′
t−2Pt−2

(
Wt−2Π′ + Vt−1

)
+

1

NT

T∑
t=2

W′
t−2Pt−2Wt−2

=
1

NT

T∑
t=2

ΠW′
t−2Pt−2Wt−2Π′ +

1

NT

T∑
t=2

ΠW′
t−2Pt−2Vt−1 +

1

NT

T∑
t=2

V′t−1Pt−2Wt−2Π′

+
1

NT

T∑
t=2

V′t−1Pt−2Vt−1 −
1

NT

T∑
t=2

ΠW′
t−2Pt−2Wt−2 −

1

NT

T∑
t=2

V′t−1Pt−2Wt−2

− 1

NT

T∑
t=2

W′
t−2Pt−2Wt−2Π′ − 1

NT

T∑
t=2

W′
t−2Pt−2Vt−1 +

1

NT

T∑
t=2

W′
t−2Pt−2Wt−2

=
1

NT

T∑
t=2

ΠW′
t−2Pt−2Wt−2Π′ − 1

NT

T∑
t=2

ΠW′
t−2Pt−2Wt−2 −

1

NT

T∑
t=2

W′
t−2Pt−2Wt−2Π′

+
1

NT

T∑
t=2

W′
t−2Pt−2Wt−2 + op (1)

= ΠΓ0Π′ −ΠΓ0 − Γ0Π′ + Γ0 + op (1)

= (I2 −Π) Γ0

(
I2 −Π′

)
+ op (1) ,

since from (A.2)
Wt−1 = Wt−2Π′ + Vt−1,

and by using the results from the lemma (A.4).
Substituting the above back to (A.10), as (N,T )→∞, we have

1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t →p D′ (I2 −Π) Γ0

(
I2 −Π′

)
D,

as required.
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(b) To show this, we note that

1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t

=
1√
NT

T∑
t=2

D′∆W′
t−1Pt−2∆u1,t +

1√
NT

T∑
t=2

(0,∆v2,t)
′Pt−2∆u1,t

=
1√
NT

T∑
t=2

D′W′
t−1Pt−2∆u1,t −

1√
NT

T∑
t=2

D′W′
t−2Pt−2∆u1,t +

1√
NT

T∑
t=2

(0,∆v2,t)
′Pt−2∆u1,t

=
1√
NT

T∑
t=2

D′ (Π− I2) W′
t−2Pt−2∆u1,t +

1√
NT

T∑
t=2

D′V′t−1Pt−2∆u1,t

+
1√
NT

T∑
t=2

(0,∆v2,t)
′Pt−2∆u1,t, (A.11)

where the first term will contribute to the limiting distribution and the last two terms will contribute
to the bias. For the second term, we have

1√
NT

T∑
t=2

D′V′t−1Pt−2∆u1,t = D′

(
1√
NT

∑T
t=2 v′1,t−1Pt−2∆u1,t

1√
NT

∑T
t=2 v′2,t−1Pt−2∆u1,t

)
,

where

1√
NT

T∑
t=2

v′1,t−1Pt−2∆u1,t = − 1√
NT

T∑
t=2

v′1,t−1Pt−2u1,t−1 + op (1)

= − 1√
NT

T∑
t=2

(
u′1,t−1 + βu′2,t−1

)
Pt−2u1,t−1 + op (1) ,

→ p −
(
σ2
u,1 + βσu,12

)√
κ,

and

1√
NT

T∑
t=2

v′2,t−1Pt−2∆u1,t = − 1√
NT

T∑
t=2

v′2,t−1Pt−2u1,t−1 + op (1)

= − 1√
NT

T∑
t=2

u′2,t−1Pt−2u1,t−1 + op (1) ,

→ p − σu,21

√
κ,

by using the results of part (b) of lemma (A.4) then

1√
NT

T∑
t=2

D′V′t−1Pt−2∆u1,t →p −D′
(
σ2
u,1 + βσu,12

σu,21

)√
κ.

Similarly, we can show that

1√
NT

T∑
t=2

(0,∆v2,t)
′Pt−2∆u1,t =

1√
NT

T∑
t=2

(0,∆u2,t)
′Pt−2∆u1,t →p

(
0

2σu,21

)√
κ.
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As a result, we have

1√
NT

T∑
t=2

DV′t−1Pt−2∆u1,t +
1√
NT

T∑
t=2

(0,∆u2,t)
′Pt−2∆u1,t →p b̃0,

where b̃0 denotes the asymptotic bias term and is given by

b̃0 = −
[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ. (A.12)

which in turn yields

1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t =
1√
NT

T∑
t=2

D′ (Π− I2) W′
t−2Pt−2∆u1,t + b̃0 + op (1) , (A.13)

and for the first term, it is obvious that

1√
NT

T∑
t=2

E
[
W′

t−2Pt−2∆u1,t

]
= 0,

and

V ar

(
1√
NT

T∑
t=2

W′
t−2Pt−2∆u1,t

)
=

1

NT

∑
s,t

E
[
W′

t−2Pt−2∆u1,t∆u′1,sPs−2Ws−2

]
=

1

NT

T∑
t=2

E
[
W′

t−2Pt−2∆u1,t∆u′1,tPt−2Wt−2

]
+

1

NT

T∑
t=3

E
[
W′

t−2Pt−2∆u1,t∆u′1,t−1Pt−3Wt−3

]
+

1

NT

T∑
t=3

E
[
W′

t−3Pt−3∆u1,t−1∆u′1,tPt−2Wt−2

]
= 2σ2

u,1

1

NT

T∑
t=2

E
[
W′

t−2Pt−2Wt−2

]
− σ2

u,1

1

NT

T∑
t=3

E
[(

ΠW′
t−3 + V′t−2

)
Pt−3Wt−3

]
−σ2

u,1

1

NT

T∑
t=3

E
[
W′

t−3Pt−3

(
Wt−3Π′ + Vt−2

)]
= 2σ2

u,1

1

NT

T∑
t=2

E
[
W′

t−2Pt−2Wt−2

]
− σ2

u,1

1

NT

T∑
t=3

E
[
ΠW′

t−3Pt−3Wt−3

]
−σ2

u,1

1

NT

T∑
t=3

E
[
W′

t−3Pt−3Wt−3Π′
]

= 2σ2
u,1Γ0 − σ2

u,1ΠΓ0 − σ2
u,1Γ0Π′ + o (1)

= σ2
u,1

(
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

))
.

As a result, we have

1√
NT

T∑
t=2

W′
t−2Pt−2∆u1,t →d N

(
0, σ2

u,1

(
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

)))
,
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by following Akashi and Kunitomo (2012), which in turn gives

1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t → N
(
b̃0, σ

2
u,1D

′ (I2 −Π)
[
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

)] (
I2 −Π′

)
D
)
,

(A.14)
as required.

The last two lemmas provide the theoretical results needed for the JIVE estimation based on
FOD and FD.

Lemma A.7 Under Assumptions 1-4, as well as the condition (10), then for the JIVE based FOD,
we have

(a).

1

NT

T−1∑
t=1

[
N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
i,t−1·t

]
= op (1) ,

(b).

1√
NT

T−1∑
t=1

N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1u

f
1,it →p

(
0

σu,12

)√
κ.

Proof. (a) We notice that

1

NT

T−1∑
t=1

[
N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
i,t−1·t

]
=

1

NT

T−1∑
t=1( ∑N

i=1 y
f
1,it−1z

′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
1,it−1

∑N
i=1 y

f
1,it−1z

′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
2,it∑N

i=1 y
f
2,itz

′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
1,it−1

∑N
i=1 y

f
2,itz

′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
2,it

)
,

(A.15)

then we need to show that each element of (A.15) has zero limit. To this end, we first notice that
for the (1,1)-th element of (A.15), we have

1

NT

T−1∑
t=1

N∑
i=1

yf1,it−1z
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
1,it−1

=
1

NT

T−1∑
t=1

N∑
i=1

wf1,it−1z
′
it−1

(
Z′t−1Zt−1

)−1
zit−1w

f
1,it−1

=
1

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1

((
BNt−1 − B̃Nt−1

)
+ B̃Nt−1

)−1
zit−1,

where BNt−1 = 1
N

∑N
j=1 zjt−1z

′
jt−1 and B̃Nt−1 = 1

N

∑N
j=1E

(
zjt−1z

′
jt−1

)
. Similar strategy has also

been used by Lee et al (2015).

Since
((
BNt−2 − B̃Nt−2

)
+ B̃Nt−2

)−1
= B̃−1

Nt−2 + 1√
N
B̃−1
Nt−2

(√
N
(
BNt−2 − B̃Nt−2

))
B̃−1
Nt−2 +
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Op

(
t2

N

)
, we have

1

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1

((
BNt−1 − B̃Nt−1

)
+ B̃Nt−1

)−1
zit−1

=
1

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1B̃
−1
Nt−2zit−1

+
1

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1

1√
N
B̃−1
Nt−2

(√
N
(
BNt−2 − B̃Nt−2

))
B̃−1
Nt−2zit−1

+Op

(
t2

N

)
1

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1zit−1

= I1 + I2 + I3,

For term I1,

|I1| ≤
C

N2T

T−1∑
t=1

N∑
i=1

(w1,it−1 − w̄1,itT−1)2 z′it−1zit−1 ≤
C

N2T

T−1∑
t=1

N∑
i=1

‖(w1,it−1 − w̄1,itT−1) zit−1‖2

= Op

(
1

NT

T−1∑
t=1

t2

)
= op (1) , (A.16)

and for term I2,

|I2| ≤
1

N2T

T−1∑
t=1

N∑
i=1

∣∣∣∣(w1,it−1 − w̄1,itT−1)2 z′it−1

1√
N
B̃−1
Nt−1

(√
N
(
BNt−1 − B̃Nt−1

))
B̃−1
Nt−1zit−1

∣∣∣∣
≤ 1

N3/2T
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∥∥∥B̃−1
Nt−2

∥∥∥2

0

∥∥∥√N (BNt−2 − B̃Nt−2

)∥∥∥ 1

N
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‖(w1,it−1 − w̄1,itT−1) zit−1‖2

≤ C

N3/2

√√√√ 1

T

T−1∑
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(
1

N

N∑
i=1

‖(w1,it−1 − w̄1,itT−1) zit−1‖2
)2
√√√√ 1

T

T−1∑
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∥∥∥√N (BNt−2 − B̃Nt−2

)∥∥∥2

=
C

N3/2

√√√√Op

(
1

T

T−1∑
t=1

t4

)√√√√Op

(
1

T

T−1∑
t=1

t2

)

= Op

(
T 3

N3/2

)
= Op

( κ

N1/2

)
= op (1) . (A.17)

by using the results of lemma (A.2). Similarly, we can show that

I3 = op (1) .

Combing these results gives us

1

NT

T−1∑
t=1

N∑
i=1

yf1,it−1z
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
1,it−1 = op (1) .
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as required.
Similarly, we can show that

1

NT

N∑
i=1

yf1,it−1z
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
2,it = op (1) ,

1

NT

N∑
i=1

yf2,itz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
2,it = op (1) ,

By combining the above results, we obtain

1

NT

T−1∑
t=1

[
N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f ′
i,t−1·t

]
= op (1) ,

as required.

(b). We first note that yfi,t−1·t =
(
yf1,it−1, y

f
2,it

)′
, then

1√
NT

T−1∑
t=1

[
N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1u

f
1,it

]

=
1√
NT
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( ∑N
i=1 y

f
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′
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(
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)−1
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f
1,it∑N

i=1 y
f
2,itz

′
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(
Z′t−1Zt−1

)−1
zit−1u

f
1,it

)
, (A.18)

For the first element of (A.18), we notice that, from the reduced form (2) and (A.3),

yfit = wf
it = Πwf

it−1 + vfit, wit = Πwit−1 + vit, (A.19)

then we have

yf1,it−1 = wf1,it−1 = π11w
f
1,it−2 + π12w

f
2,it−2 + vf1,it−1

= π11ct (w1,it−1 − w̄1,itT ) + π12ct (w2,it−1 − w̄2,itT ) + ct (v1,it−1 − v̄1,itT ) , (A.20)

where w̄1,itT = 1
T−t

∑T−1
s=t w1,is and w̄2,itT = 1

T−t
∑T−1

s=t w2,is, and since

Π =

(
π11 π12

π21 π22

)
=

(
γ + βγ21 βγ22

γ21 γ22

)
,

and
v1,it = u1,it + βu2,it = (1, β) uit, (A.21)

because

vit = B−1

(
u1,it

u2,it

)
=

(
1 β
0 1

)(
u1,it

u2,it

)
=

(
u1,it + βu2,it

u2,it

)
. (A.22)
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Then, we have
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f
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N∑
i=1

π12c
2
t (w1,it−1 − w̄1,itT ) z′it−1

(
Z′t−1Zt−1

)−1
zit−1 (u1,it − ū1,it+1T )
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= I1 + I2 + I3, say,

For the first term I1, we have
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)
+ o (1)
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where
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under restriction (10). The above holds since for s > t, from (A.2) and (A.19),

wis = Πs−t−1wit−1 + vis + Πvis−1 + · · ·+ Πs−tvit,

then
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′
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and since the process is stationary by assumption 2. Also, we have

E
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i=1
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For I12, we have
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Consequently, we have
E (I1) = o (1) .

35



For the variance of I1, we notice that
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since E
[
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]
and E

[
(u1,it − ū1,it+1T )8

]
are finite under assumption 1.

As a result, we can conclude that
I1 = op (1) . (A.23)

Similarly, we can show that
I2 = op (1) . (A.24)
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For I3, we notice that
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and we can also show that
V ar (I3) = o (1) ,

by following the derivation above.
Combining the above results, we obtain
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For the second element of (A.18), we first notice that
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then we have
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it can be shown by using the derivation above that

I4 →p 0, and I5 →p 0. (A.26)

37



Using a similar argument for I6, we obtain
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=
1√
NT

T−1∑
t=1

N∑
i=1

v2,itu1,itz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1 + op (1)

=
1√
NT

T−1∑
t=1

N∑
i=1

u2,itu1,itz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1 + op (1)

=
σu,12√
NT

T−1∑
t=1

2t+ op (1)

→ pσu,12

√
κ,

since v2,it = u2,it from (A.22) and by applying lemma (A.4).
Consequently, we can get
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which in turn yields
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′
it−1

(
Z′t−1Zt−1

)−1
zit−1u

f
1,it

]
→p

(
0

σu,12

)√
κ,

as required.

Lemma A.8 Under Assumptions 1-4, as well as the condition (10), we have
(a) For FD case, we have

1

NT

T∑
t=2

[
N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆yi,t−1·t

]
= op (1) .

(b) For the FD, we have

1√
NT

T∑
t=2

N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it →p −

[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ.

Proof. (a) To show this result, we first notice that

1

NT

T∑
t=2

[
N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y′i,t−1·t

]
=

1

NT

T∑
t=2( ∑N

i=1 ∆y1,it−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y1,it−1

∑N
i=1 ∆y1,it−1z

′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y2,it∑N

i=1 ∆y2,itz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y1,it−1

∑N
i=1 ∆y2,itz

′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y2,it

)
,

(A.28)
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as before, we need to show that each element of (A.28) has zero limit. For the (1,1)-th element of
(A.28), we have

1

NT

T∑
t=2

N∑
i=1

∆y1,it−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y1,it−1

=
1

NT

T∑
t=2

N∑
i=1

(w1,it−1 − w1,it−2)2 z′it−2

(
Z′t−2Zt−2

)−1
zit−2

=
1

NT

T∑
t=2

N∑
i=1

w2
1,it−1z

′
it−2

(
Z′t−2Zt−2

)−1
zit−2 +

1

NT

T∑
t=2

N∑
i=1

w2
1,it−2z

′
it−2

(
Z′t−2Zt−2

)−1
zit−2

− 1

NT

T∑
t=2

N∑
i=1

2w1,it−1w1,it−2z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2,

by following the derivation of part (b) of lemma (A.7), we can show that

1

NT

T∑
t=2

N∑
i=1

w2
1,it−1z

′
it−2

(
Z′t−2Zt−2

)−1
zit−2 = op (1) ,

1

NT

T∑
t=2

N∑
i=1

w2
1,it−2z

′
it−2

(
Z′t−2Zt−2

)−1
zit−2 = op (1) ,

1

NT

T∑
t=2

N∑
i=1

2w1,it−1w1,it−2z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2 = op (1) ,

which gives

1

NT

T∑
t=2

N∑
i=1

∆y1,it−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y1,it−1 = op (1) .

Similarly, we can show all other elements of (A.28) have zero probability limit, i.e.,

1

NT

T∑
t=2

N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆y′i,t−1·t = op (1) ,

as required.
(b) In order to show this, we notice that

1√
NT

T∑
t=2

[
N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]

=
1√
NT

T∑
t=2

[
N∑
i=1

(
∆w1,it−1

∆w2,it

)
z′it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]

=
1√
NT

T∑
t=2

[
N∑
i=1

D′∆wi,t−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]

+
1√
NT

T∑
t=2

[
N∑
i=1

(0,∆v2,it)
′ z′it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]
, (A.29)
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which holds since(
∆w1,it−1

∆w2,it

)
=

(
∆w1,it−1

π21∆w1,it−1 + π22∆w2,it−1

)
+

(
0

∆v2,it

)
= D′∆wi,t−1 +

(
0

∆v2,it

)
,

by using (A.4).
For the first element of (A.29), we have

1√
NT

T∑
t=2

[
N∑
i=1

D′∆wi,t−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]

= −D′
1√
NT

T∑
t=2

[
N∑
i=1

wi,t−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2u1,it−1

]

= −D′
1√
NT

T∑
t=2

[
N∑
i=1

wi,t−1u1,it−1z
′
it−2

(
Z′t−2Zt−2

)−1
zit−2

]

= −D′B−1Ωu (1, 0)′
1√
NT

T∑
t=2

2 (t− 1) + op (1)

→ p −D′B−1Ωu (1, 0)′
√
κ, (A.30)

as (N,T )→∞ and under (10), since

E (wi,t−1u1,it−1) = E
(
vi,t−1u

′
it−1

)
(1, 0)′

= B−1E
(
uitu

′
it

)
(1, 0)′

= B−1Ωu (1, 0)′ =

(
σ2
u,1 + βσu,12

σu,12

)
,

and by following the derivation of (A.4).
Similarly, for the second element of (A.29), as (N,T )→∞ and under (10), we have

1√
NT

T∑
t=2

[
N∑
i=1

(
0

∆v2,it

)
z′it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]

=

(
0

1√
NT

∑T
t=2

∑N
i=1 ∆v2,it∆u1,itz

′
it−2

(
Z′t−2Zt−2

)−1
zit−2

)

= (0, 1) B−1Ωu (1, 0)′
(

0
1√
NT

∑T
t=2 2 (t− 1)

)
+ op (1)

→ p

(
0

2σu,21

)√
κ, (A.31)
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since

E (∆v2,it∆u1,it) = 2E (v2,itu1,it)

= 2 (0, 1)E
(
vitu

′
it

)
(1, 0)′

= 2 (0, 1) B−1E
(
uitu

′
it

)
(1, 0)′

= 2 (0, 1) B−1Ωu (1, 0)′

= 2σu,21.

Combining (A.30) and (A.31) yields

1√
NT

T∑
t=2

[
N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

]
→p −

[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ,

as required.

A.2 Derivation of GMM based on FOD

In order to show the results of Theorem 1, we notice that

√
NT

(
θ̂
FOD
GMM − θ

)
=

(
1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

f
t−1·t

)−1
1√
NT

T−1∑
t=1

Yf ′
t−1·tPt−1u

f
1,t, (A.32)

where for the denominator, by using the results in part (a) of lemma (A.5), we obtain

1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

f
t−1·t =

1

NT

T−1∑
t=1

Y′t−1·tPt−1Yt−1·t + op (1)

→ pD
′Γ0D, (A.33)

where Γ0 =
∑∞

i=0 ΠiΩvΠ
i′ =

∑∞
i=0 ΠiB−1ΩuB

′−1Πi′ and

D =

(
1 π21

0 π22

)
=

(
1 βγ22

0 γ22

)
. (A.34)

For the numerator of (A.32), by using the results in part (b) of lemma (A.5), we have

1√
NT

T−1∑
t=1

Yf ′
t−1·tPt−1u

f
1,t =

1√
NT

T−1∑
t=1

Y′t−1·tPt−1u1,t + op (1)

→ dN
(
0, σ2

u,1D
′Γ0D

)
−
(

0
σu,12

)√
κ, (A.35)

where κ = T 3

N <∞ as N →∞.
Substituting (A.33) and (A.35) into (A.32) yields the required result.
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A.3 Derivation of GMM based on FD

For the results of Theorem 2, we notice that

√
NT

(
θ̂
FD
GMM − θ

)
=

(
1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t

)−1
1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t, (A.36)

where ∆u1,t = (∆u1,1t, . . . ,∆u1,Nt)
′ .

Using the results of lemma (A.6), as (N,T )→∞, we have

1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t →p D′ (I2 −Π) Γ0

(
I2 −Π′

)
D, (A.37)

where D and Π are defined in (A.34) and (2), respectively, and

1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t →d N
(
b̃0, σ

2
u,1D

′ (I2 −Π)
[
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

)] (
I2 −Π′

)
D
)
,

(A.38)
where

b̃0 = −
[
D′
(
σ2
u,1 + βσu,12

σu,21

)
−
(

0
2σu,21

)]√
κ. (A.39)

Substituting (A.37) and (A.38) into (A.36) yields the required result.

A.4 Derivation of JIVE based on FOD

In order to show the results of Theorem 3, we first notice that

√
NT

(
θ̂
FOD
JIV E − θ

)
=

 1

NT

T−1∑
t=1

 N∑
j=1

∑
i 6=j

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zjt−1y

f
j,t−1·t

−1

× 1√
NT

T−1∑
t=1

 N∑
j=1

∑
i 6=j

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zjt−1u

f
1,jt

 . (A.40)

For the denominator of (A.40), we have

1

NT

T−1∑
t=1

N∑
j=1

∑
i 6=j

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zjt−1y

f
j,t−1·t

=
1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t −

1

NT

T−1∑
t=1

[
N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1y

f
i,t−1·t

]

=
1

NT

T−1∑
t=1

Yf ′
t−1·tPt−1Y

(f)
t−1·t + op (1)

→ pD
′Γ0D, (A.41)

by using the result of part (a) from both lemma (A.5) and lemma (A.7).
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For the numerator,

1√
NT

T−1∑
t=1

N∑
i=1

∑
j 6=i

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zjt−1u

f
1,jt

=
1√
NT

T−1∑
t=1

Y
(f)′
t−1·tPt−1u

f
1,t −

1√
NT

T−1∑
t=1

N∑
i=1

yf ′i,t−1·tz
′
it−1

(
Z′t−1Zt−1

)−1
zit−1u

f
1,it

=
1√
NT

T−1∑
t=1

Y
(f)′
t−1·tPt−1u

f
1,t −

(
0

σu,12

)√
κ+ op (1)

→ dN
(
0, σ2

u,1D
′Γ0D

)
, (A.42)

by using the results of part (b) from both lemma (A.5) and lemma (A.7).
As a result, combining equations (A.41) and (A.42), we obtain the result of Theorem 3 as

required.

A.5 Derivation of JIVE based on FD

Finally, for the results of Theorem 4, we have

√
NT

(
θ̂
FD
JIV E − θ

)
=

 1

NT

T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆yj,t−1·t

−1

× 1√
NT

T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆u1,jt, (A.43)

where for the denominator, we have

1

NT

T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆yj,t−1·t

=
1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t −
1

NT

T∑
t=2

[
N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆yi,t−1·t

]

=
1

NT

T∑
t=2

∆Y′t−1·tPt−2∆Yt−1·t + op (1)

→ pD
′ (I2 −Π) Γ0

(
I2 −Π′

)
D, (A.44)

by using the result of part (a) from both lemma (A.6) and lemma (A.8). For the numerator,

1√
NT

T∑
t=2

N∑
j=1

∑
i 6=j

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zjt−2∆u1,jt

=
1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t −
1√
NT

T∑
t=2

N∑
i=1

∆y′i,t−1·tz
′
it−2

(
Z′t−2Zt−2

)−1
zit−2∆u1,it

=
1√
NT

T∑
t=2

∆Y′t−1·tPt−2∆u1,t − b̃0 + op (1)

→ dN
(
0, σ2

u,1D
′ (I2 −Π)

[
(I2 −Π) Γ0 + Γ0

(
I2 −Π′

)] (
I2 −Π′

)
D
)
, (A.45)
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by using the results of part (b) from both lemma (A.6) and lemma (A.8).
Consequently, combining equations (A.44) and (A.45), we obtain the result of Theorem 4 as

required.

44


