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Abstract

We consider the method of moments estimation of a structural equation in a panel dynamic
simultaneous equations model under different sample size combinations of cross-sectional di-
mension, N, and time series dimension, 7. Two types of linear transformation to remove the
individual-specific effects from the model, first difference and forward orthogonal demeaning, are
considered. We show that the Alvarez and Arellano (2003) type GMM estimator under both
transformations is consistent only if % — 0 as (N, T) — oo. However, it is asymptotically biased

if %3 — Kk # 0 < co. Since the validity of statistical inference depends critically on whether an
estimator is asymptotically unbiased, we suggest a jackknife bias reduction method and derive
its limiting distribution. Monte Carlo studies are conducted to demonstrate the importance of
using an asymptotically unbiased estimator to obtain valid statistical inference.
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1 Introduction

Inertia in human behavior, and institutional and technological rigidities have lead many to believe
that "all interesting economic behavior is inherently dynamic, dynamic models are the only relevant
models" (Nerlove (2000)). However, the presence of time-invariant unobservable individual-specific
effects in panel dynamic models create correlations between all current, past and future jointly
dependent variables. For a linear regression model, the individual-specific effects affect the outcomes
linearly, and they can be removed from the specification by taking linear difference of an individual’s
time series observations (e.g., Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), Arellano
and Bover (1995)). How this linear transformation is conducted does not affect the asymptotic
distribution of an estimator if the regressors are strictly exogenous with respect to the idiosyncratic
time-varying equation errors (e.g., Hsiao (2014)). But for a dynamic model, different form of
linear transformation creates different form of correlations between the transformed lag dependent
variables and the transformed individual time-varying errors of the equation. How this correlation
affects the asymptotic distribution of a panel dynamic model estimator depends on the relative
size of the cross-sectional dimension N and the time series dimension 7' (e.g., Alvarez and Arellano
(2003), Akashi and Kunitomo (2012), Hahn and Kuersteiner (2002), Hahn and Newey (2004),
Phillips and Moon (1999)).

For panel dynamic simultaneous equations models, there is another source of correlations,
namely, the correlations between the regressors in a behavior equation with the error of the equation
due to the joint dependence (e.g., Hood and Koopmans (1953)). The asymptotic bias of the con-
ventional method of moments estimators arising from the correlations between the contemporary
regressors and contemporary errors are not easily removed by using the lagged variables as instru-
ment variables (IVs). For example, Akashi and Kunitomo (2012) have shown that if 7" increases
with N and % — ¢ # 0 as N — o0, then the GMM estimator for panel dynamic simultaneous
equations model is not even consistent.

Although consistency is one of the most important and desirable properties for an estimator,
whether an estimator is asymptotically unbiased also plays a critical role in obtaining valid sta-
tistical inference (e.g., Hsiao and Zhang (2015), Hsiao and Zhou (2015)). In this paper, we first
consider the asymptotic properties of the GMM estimator for a structural equation in a panel dy-
namic simultaneous equations model. We show that for a GMM estimator to be consistent, we will
need N much larger than T in the sense % — 0 as N — oo. However, as long as TWS —Kk#0< 0
as N — oo, the GMM estimator is still asymptotically biased and the bias is of order /k. Since
the validity of statistical inference depends critically on an estimator is asymptotically unbiased or
not, we suggest a jackknife procedure (e.g., Phillips and Hale (1977), Angrist et al (1999) and Chao
et al (2012)) to correct the bias of GMM. We show that under the assumption that (N,T) — oo
with TWS — k # 0 < 00, the JIVE is asymptotically normal without an asymptotic bias.

The paper is organized as follows. In Section 2 we introduce a simple panel dynamic simultane-
ous equations model and two transformations that are often used to eliminate the individual-specific
effects in the dynamic simultaneous equations model, and discuss their valid instrumental variables
(IVs). Section 3 investigates the asymptotics of the GMM estimator based on the IVs in Section 2.
We characterize the many Vs bias of the GMM estimator under different sample size combinations
of N and T. In Section 4 we introduce the JIVE estimator and derive its asymptotic properties. In
Section 5 we investigate finite sample properties of the GMM estimator and the JIVE using Monte
Carlo simulations. Section 6 concludes the paper. All the mathematical proofs and derivations are

!The alternative asymptotics is introduced by Lee et al (2015) where they consider %3

alternative to the asymptotics % — ¢ # 0 < oo considered by Alvarez and Arellano (2003).

— Kk # 0 < oo, which is



presented in the appendix.

2 Model

We consider the statistical properties of the GMM estimator of a parametrically identified equation
in a panel dynamic simultaneous equations model. Since it is the joint dependence of a G x 1 vector
yit and the dependence between y;; and y;s (¢t # s) that impact the asymptotic distribution of an
estimator, not the fixed dimension strictly exogenous explanatory variables, x;, 2 there is no loss
of generality to consider the following two equations system (G = 2)3

Yiit = YYlit—1 + BY2i + o1 + up, (1)
Y245t = Yo1Yl,it—1 + Y22Y2,it—1 + Qg + U2 it 1= 17 ey N7 t= 17 cee )Ta

For ease of notations, we also assume y;p = (yl,io,yg,io)/ are observable. Following the limited
information approach of Anderson and Rubin (1949), there is no loss of generality to consider the
estimation of the first equation in system (1), 5 and ~.
The reduced form of (1) is
yit = Hyi—1 +&; + v, (2)

where yit = (Y1it,Y2,it) » Yit—1 = (Y1,it—1, Y2,i—1)" and
B - (1 _B)II:(WH 7T12>:B1< v 0 >:<’Y+ﬁ’721 ﬂ722>7 3)
0 1 T21 T22 Yo1 Y22 Y21 Y22

£ = B la; =B! < Zli ) Vi = B lu, =B < U1 4t > _ ( Uit + Pug > ’ (4)

2i U2, it U2,it

with
E(vyg) =0,E (viuvi) = Q, = BT'E (uu),) B~ =B'Q,B"". (5)

For model (1), we assume
Assumption 1. {u;} are ii.d. over ¢ and ¢, and are independent of a; and y;o. We also

2
assume that E (u;) = 0, E (u;pu},) = Q, = ( Tul  Tul2 ) with finite eighth moment.

Ou21l Oy2
Assumption 2. All the eigenvalues of II are within the unit circle.
Assumption 3. The initial values y;0 = (I2 — H)f1 & +wy for i = 1,..., N, where w;g =
Yoo o II*v; g is independent of ;.
Assumption 4. o; (or §;) are independent of uj; for all 4, j, ¢ and with finite fourth moment.
Assumption 1 is made to simplify the derivation. It can be replaced by heteroskedastic u; or
u;; following a finite order autoregressive process without affecting the general conclusions of the
asymptotic distribution of an Alvarez and Arellano (2003) type GMM estimator to be discussed
later. Assumption 2 is a stationarity assumption to ensure that the VAR model (2) is stationary.
Assumption 3 actually follows from Assumption 1 and 2 through continuous substitution of (2). It
is explicitly stated here for ease of exposition in later sections, as in Alvarez and Arellano (2003,

2Whatever transformation on the fixed dimension strictly exogenous variables x;; is conducted, the transformed
X, remains uncorrelated with the transformed idiosyncratic time-varying errors of the equation.

3Exclusion restriction is required for the identification of the first equation. For discussion of the identification
of an equation in a general panel dynamic system, see Hsiao (1982), Hsiao and Zhou (2015). Akashi and Kunitomo
(2012) consider a special case when v,; = 0.



P1126) and Akashi and Kunitomo (2012, P169). Assumption 4 makes no distinction between the
fixed or random effects specification because we consider estimators that remove a; (or &;).

For model (1), as discussed by Hsiao (2014) and Moon et al (2015), the presence of individual-
specific effects «; raises the issue of incidental parameters for dynamic systems, certain linear
transformation has to be used to remove the the individual-specific effects. We consider two trans-
formations that are most frequently used in applications, (i) the forward orthogonal demeaning
(FOD) in Arellano and Bover (1995), Alvarez and Arellano (2003), etc. and (ii) the first difference
as in Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), etc.

The FOD transformation is defined as, for t = 1,...,7 — 1, let yift = ¢ (yit — ﬁ ZST:tH yis) ,

f _ ) 1 T ) I _ ) 1 T ) 2 .  T—t
Yigm1 = C\Yit—1 — 7 Zs:t+1 Yis—1), and uy = ¢ (Uit — 7 Zs:t+1 Uis ) , where ¢ = 77.

Then, for the first equation of (1), we have

y{’it = Pyy{ﬂ.tfl + ﬂyg’it + u{it, i=1,...,N;t=1,...,T - 1. (6)

The FOD transformation creates errors that satisfy

2
E <u{zt> = 0, F (u{zt> = 03,17
K (u{,itu{,is) = 0ift#s B (u{,itu{,js) = 0if i # j;
as shown by Alvarez and Bover (1995) (also see Alvarez and Arellano (2003) or Hsiao and Zhou
(2017)).

Notice that although u{?it is i.i.d. over ¢ and t, it is correlated with the transformed regressors,

ygit and y{z +_1- However, for 0 < s <t —1, we have

E (yl,isu{ﬂ‘t) =0,F (yQ,isu{,it> =0.

Let
Zit1 = (Y100, Y2,i0 - - - YLit—1, Y2,it—1) - (7)
Then z; ;1 are orthogonal to the transformed error u{ i in (6) . Also, under Assumption 2, z; ;1

are correlated with the transformed regressors yg i and y{i .1~ In this paper, we consider z;;_1 in

(7) as IVs for model (6).
An alternative transformation widely used in practice is to take the first time difference (FD)
(e.g., Anderson and Hsiao (1981, 1982) and Arellano and Bond (1991)). Denote A to be the first
difference of time series, such that Ay, = vt — yit—1, for example. Then, the first equation of (1)

becomes
Ayi it = YAY1 -1 + BAY2.it + Aur e, 1 =1,..., N, t =2,...,T. (8

~—

The transformed error, Au; ;, follows a first order moving average process. However, for 0 < s <
t — 2, we have
E (y1isAurit) = 0, E (y2,sAurit) = 0.

From this, we choose
. /
Zit—2 = (Y1,i0, Y2,05 - - - » YL,it—2, Y2,it—2) 5 9)

as legitimate IVs for model (8).



The difference between FOD and FD is that the error in (6) is i.i.d over ¢ and ¢, but the error in
(8) follows a first order moving average process. Moreover, (6) uses (y1,i0, Y2,i0; - - - » Y1,it—1, Y2,it—1)
as instruments and (8) uses (Y1,i0, ¥2,i0; - - - » Y1,it—2, Y2,it—2) as instruments.

We will show that the Alvarez and Arellano (2003) type GMM estimator using the FOD or FD
transformation is inconsistent if % — c#0as N — oo. It is consistent and asymptotically biased
ift

T3
F—>/<c7é0<ooas (N,T) — 0. (10)

Condition (10) is also a crucial condition to establish the asymptotic unbiasedness of the JIVE to
be discussed later.
3 GMM estimators and their asymptotics

Based on the instrument sets (7) and (9), we consider two types of GMM estimators for the first
equation of model (1). The first one is the GMM estimator based on the FOD of model (6) (Alvarez
and Arellano (2003), Akashi and Kunitomo (2012))

T-1 “lp

~FOD

Ocrn = (Z Y{iLtPt—lth—l-t) Z Y{il-tPt—ly{w (11)
t=1 t=1

1 )
where 8 = (v,5), Yg:l.t = (y{tfl,yg’t) and P;_1 = Z;_ (Z;_IZt,l) Z, | with Z;_; =
(¥1,0,¥2,05---»¥Y1,6-1,¥2,¢—1) and

f _ (. f f R A Fy
Yit-1 = (yl,lt—lf"?yl,Ntfl) Yo = (y2,1t7""y2,Nt) )
Yiie1 = (Y1, yine—1) Y21 = (Y2101, - - Y2 ne—1) -

The asymptotic distribution of the GMM based on the FD in model (8) is difficult to derive
because it involves the inverse of a (T'— 1) x (T'— 1) covariance matrix of a first order moving
average process. Therefore, instead of considering the Arellano-Bond type GMM estimator for FD
model (8), we consider the Alvarez and Arellano (2003) "crude GMM estimator",”

T -
SFD
Ocrv = (Z AY;t_l.tPtQAYtLt) > AY] PioAyiy, (12)
=2 t=2

-1 .
where AY;_14 = (Ay14-1,Ayoys) and Py_g = Zy_o (Z}_3Z42)  Zj_y withZy_5 = (y1,0,¥2,0,---> Y142, Y2,t—2)
and

Ay1i-1 = (Ay11i-1, - Ay ne—1) Ay = (Ayiae, -, Ayine) s Ayar = (Aya s, - .-, Ay ne) -

4Similar restriction has also been imposed by Akashi and Kunitomo (2012) and Lee et al (2015).
’Note that the crude GMM is not the Arellano-Bond type GMM (Arellano and Bond (1991)) which takes into
account the first order dependence of transformed errors (e.g., Hsiao and Zhang (2015)).



3.1 Asymptotics for GMM estimator based on FOD

Although (11) is of the same form as the single equation GMM estimator of the Alvarez and
Arellano (2003), there is a fundamental difference between the two. The single equation dynamic
panel data model assumes all the regressors are either predetermined or strictly exogenous (with
respect to u;). On the other hand, the regressor for the single equation GMM estimator of (1) or
(2) could also consist of other joint dependent variables that are correlated with the error in the
equation (here, y2 ;s and uj ;). When T is fixed, and N is large, both types of GMM estimators are
consistent and asymptotically normally distributed. When 7' is also large, but % —c#0< 0 as
N — o0, the single equation GMM estimator remains consistent but asymptotically biased of order
V¢ (Alvarez and Arellano (2003)). However, for GMM estimator of panel dynamic simultaneous
equations model, if % —c#0<o0as (N, T) — oo, the GMM estimator is no longer consistent.
We need N to be much larger than 7" to obtain consistency of this GMM estimator.
For the GMM estimator based on FOD (11), Section (A.2) in the appendix shows that

Theorem 1 Under Assumptions 1-4 and the condition (10), the GMM estimator (11) is consistent
and asymptotically distributed as

VNT (02%4 - 0) g N (bg 02, (DTOD)_1> , (13)
where
f— (D -1 0
b{ — — (D'TyD) < o ) JF,

denotes the asymptotic bias and

1 By S
D = 22 ) ,To =) II'B~'Q,B'II",

with IT and B are given in (3) and k is given in (10).

Remark 1 [t follows from Theorem 1 that if Kk = 0, the FOD GMM estimator @g?ﬁ/f s asymp-
totically unbiased. However, if k # 0, the égAO/IDM is asymptotically biased of order 4/ %3, which is

the same order as in Akashi and Kunitomo (2012). If % —c# 0 as (N,T) — oo considered in
Alvarez and Arellano (2003), the GMM estimator (11) is inconsistent, i.e.,

3.2 Asymptotics for crude GMM estimator based on FD
For the crude GMM estimator (12), it is shown in Section (A.3) of the appendix that

Theorem 2 Under Assumptions 1-4 and the restriction (10), the crude GMM estimator (12) is
asymptotically distributed as
~FD - _
VNT (HGMM - 9) g N (bOA, o2 D (I, — 1) [T (I — T1) + (I — I) Ty ] (I, — 1) ! D—l) .
(14)



where b = [D' (I — II) Ty (I, — ') D] ' by,

b () (e

Ou,21 20,21
and D, Il and Iy are defined in Theorem 1.

Remark 2 As in the FOD case, the crude GMM estimator (12) is inconsistent when % —c#0.
Even if % — 0 as (N,T) — oo with %3 — k # 0, it is asymptotically biased of order \/TW‘?’.

Remark 3 Due to the complicated variance-covariance matrixz of the crude GMM based on FD,
it is difficult to directly compare the asymptotic efficiency for these two GMM estimators based
on FOD (estimator (11)) and FD (estimator (12)) for the panel dynamic simultaneous equations
models. We note that the crude GMM based on FD (estimator (12)) is not a GMM estimator, and
it is expected to have a larger covariance matrix than the GMM based on FOD. Since GMM based
FOD or FD uses identical number of moment conditions with almost identical 1Vs, we expect that
(12) is not as efficient as (11). In a similar context, Lee et al (2015) find that GMM based on FOD
is asymptotically more efficient than the crude GMM based on FD. Moreover, from the simulation
below, we observe that the iqr (inter-quantile range) of GMM based on FOD is much smaller than
that of the crude GMM based FD. Thus, for models of the form (1), we conjecture that the GMM
based on FOD is more efficient than the crude GMM based on FD.

Remark 4 As noted by a referee, the GMM estimator of the reduced form parameters, 11, are
consistent if % —c#0< % as N — oo by a straightforward generalization of Alvarez and
Arellano (2003). However, the structural form parameters could be ratios of the reduced form
parameters (e.g., here § = %) Moreover, if a structural equation is over-identified, there is an
issue of how to account for the complicated nonlinear restrictions in obtaining efficient estimators
of structural form parameters (e.g., Intrilgator et al (1996)). These issues are complicated and

deserve an independent study.

4 JIVE and its asymptotics

We note that the GMM estimator (11) or (12) can also be viewed as finding optimal instruments
W, or V~Vit that satisfy E (Wltu{w> =0and FE (WitAu1,¢t> = 0. In sample analogue, we have

1 T-1 N
NT-T) D> Wil =0, (16)
t=1 i=1
or
1 T N
Z Z Wi Aug ¢ 0, (17)
N(T-1) =z
where
1| = 1|
Wi =24y (Zy_1Zi—1) sztflyf,ltq Wit =2y o (Zi_5Zs—2) sztf2AY;‘,t—1 )
j=1 j=1



with Y%—1 = (y{,it—l’yg,it> and Ay}, 1 = (Ayri—1, Aya,it) -

Under the assumption that u;; are i.i.d over ¢, and t, so are uzj;, therefore,

N
E Y 2yl |ul| = (Zit—lyfiLW{,it) # 0, (19)
=1
N
E szt_szg«,tfl Auy g | = E (zi—2Ayj ;1 Auyi) # 0. (20)

Jj=1

Equation (19) or (20) is the source of asymptotic bias for the GMM estimator (11) or (12).

However, if we remove the ith individual’s observation in the construction of Wy or W, so

N N
Wi =2} 4 (Zéflzt—l)il szt—13’%_1 , Wi =2 (Z;f2zt—2)71 Zth—2Ay;,t71 ]
J# J#
(21)
then
E (W;‘tu{it) =0or £ (W;‘tAuut> =0. (22)

Thus, using W7, or W;ft as IV removes the source of asymptotic bias. That’s how JIVE corrects
the asymptotic bias of GMM estimator.

4.1 JIVE based on FOD
The JIVE for (11) is defined as

- -1
T-1| N

~FOD -1
O;ve = Z Z Z (y@f,;—lizgt—l) (Z;—lztfl) thflyf,t—u (23)
t=1 |j=1 i#j

T-1| N

X Z ZZ (yzf,;frtzgt—l) (Z;—lztfl)_l Zﬁfly{jt ’

t=1 | j=1 i#j

f _(.f f f _(.f f
where y;, 1, = (yl,it—DyQ,it) and Yit—11t = <y1,jt—17y2,jt) .

Remark 5 When T — 1 =1, the above JIVE (23) is identical to the JIVE2 proposed in Angrist et
al (1999, P61) for cross-sectional models.

For this JIVE (23), it is shown in the Section (A.4) of the appendix that

Theorem 3 Under Assumptions 1-4 and the restriction (10), the JIVE estimator (23) is asymp-
totically distributed as

VNT (8575 —0) —a N (0,02,D'7'T5 DY), (24)

where D, Il and I'g are defined in Theorem 1.



Remark 6 As can be seen from (24), the JIVE of (1) using FOD is asymptotically unbiased.
Additionally, the JIVE is as efficient as the original GMM estimator (11), i.e., there is no efficiency
loss for the JIVE.S

Remark 7 As pointed out by a referee, the purpose of this JIVE is to construct an instrument for
observation (i,t) which does not involve any observation dependent with (i,t). If there is spatial-
temporal dependence in the observation, then the JIVE bias reduction property would vanish or
diminish.”

Remark 8 As noted by a referee that one of the advantage of JIVE is its ability to handle het-
eroskedastic disturbance. This is indeed the case because the construction of JIVE for the (i,t)
observation excludes the use of ith individual observations. However, the asymptotic covariance
matriz of the JIVE estimator no longer possesses the neat form as in (24).8

Standard Error Computation
Under Assumption 1 of homoskedasticity, given that the JIVE estimators are consistent and

FOD FOD !
asymptotically unbiased, a consistent estimator for the variance of M JIVE = <B JIVES 7§IOV%> can

be obtained by replacing 02 ;, D and T'g in (24) by their estimates 62, D and Iy, respectively.

u,1 u,1»
Let
| TN ) = ) | TN
-9 o o X
ul = NT Z (“ut) ) u,2 NT Z <U2 t) and Gy,12 = NT Z Z ztu2 it
t=1 i1=1 t=1 1=1 t=1 i=1
RN K OD ~FOD . - - .
with @, =yl — Borveydy — VIR EYL o1 and @5 = Yl — Faryzie—1 — Yaayzie—1 given the

estimators of 79 and 55, we have

b — <1 B%z) ﬂ:<fr11 7?12>:<’y+f3’?21 3%2)
0 Ao /)’ TTo1 22 Va1 V22
1 B -
B = Iy=> 1°'B'Q,B11¥
(o 7) 1= ,

by using the above estimators ai 1,0 32 and 4, 12.

4.2 JIVE based on FD

For model (8) based on FD, we can define the JIVE as
-1

9§ID\/E = Z Z Z AY;7t—1.tZ;t—2 (Z;:—ta—2) - Zji2 QY11 (25)
t=2 j=1 i#j
T N .
X Z Z Z Ayg,tfltzgth (Z272Zt—2)7 zjt—28Y1 jt,
t=2 j=1 i#j

®In a different context, Hahn and Newey (2004) have also established that jackknife correction does not affect the
asymptotic variance.

"When u1,5¢ is serially correlated, FOD loses its attraction. It does not yield i.i.d errors. Also, unless the pattern
of serial correlation is known, lagged variables may not be legitimate IVs. Neither is (11) a GMM estimator. For the
application of JIVE in a simple univariate dynamic panel model with errors following a first order moving average
process, see Lee at al (2015).

8Under certain assumptions, one can show that the GMM is asymptotically biased of order 4/ %3 However, the
exact bias is complicated and depends on oy,12; where 04,12 = Cov (u1,5¢,u2,¢) (1 =1,...,N).



where Ay; 1.+ = (Ay1it—1, Ayoit) and Ayji—1.4 = (Ay1jt—1, Aya jt) -
For this JIVE (25), it is shown in the Section (A.5) of the appendix that

Theorem 4 Under Assumptions 1-4 and the restriction (10), the JIVE estimator (25) is asymp-
totically distributed as

VNT (@‘;IDVE - 0) 4 N (0, o2 D (I — 1) [T (I — 1) + (I — V) T ] (Ip — 1)~ D—l)
(26)
where D, Il and I'g are defined in Theorem 1.

Remark 9 As can be seen from (26), the JIVE indeed corrects the asymptotic bias of the crude
GMM estimator of (1) using FD, as long as T3/N < oo as N — oo despite the number of instru-
ments increasing with T.

Standard Error Computation
The standard error computation for JIVE based on FD is similar to the case where FOD is used.
The only difference is in the estimation of 0371, 0372 and o, 12, which are based on the residuals

from the JIVE using FD. For instance, we can estimate 012%1 by 5371 = 1+ EtT:Q sz\il (Ady it)?

. ~FD . .. .
where Aty 4 = Ayt — BrrveAY2,i —7§[DVEA?/1,it—1- Similarly for the estimation of 03’2 and oy, 12,

and estimation of the remaining terms in (26).

5 Monte Carlo Simulations

In this section, we study the finite sample properties of the GMM and JIVE estimators considered
above. The data generating process is

Ylit = YYLit—1 + By2 + a1 + Ui,

Y2t = YorYlit—1 T YooUlit—1 + Q24 + Ui,

with v = 0.5, 8 = 0.5, 79; = 0.2, 799 = 0.6.° For the individual-specific effects, we assume
ay;~IIDN (0,1) and ag; ~ IIDN (0,2) for i = 1,2,..., N. For the error terms, we assume that

U1,it 1 05
(o) = (0L 7)),

fore=1,...,N,t =1,...,T. Also, (al,i,ag,i)/ and (ul,,;t,umt)/ are independent over i and t. We
consider different combinations of N,T by letting N = 1000, 2000 and 5000, and 7" = 10,25 and
50. We generate T 4 100 observations, and the first 100 observations are discarded. The number
of replication is set at 1000 times.

We consider the GMM estimation as well as the JIVE proposed in the paper to estimate v and
5 in the above DGP. For comparison, we also consider the LIML estimation considered by Akashi
and Kunitomo (2012)'°, the regularized JIVE (RJIVE) proposed by Hansen and Kozbur (2014)!!.

9Under this specification, we have II = B~1 ( v 0 ) = ( 0.6 0.3 ) , whose eigenvalues are given by

Yo1 Va2 0.2 0.6
0.8449 and 0.3551, so Assumption 2 is satisfied.
'0As shown by Akashi and Kunitomo (2012, P170), the LIML estimation of model (1) is asymptotically biased of

order w/%.
"We follow Hansen and Kozbur (2014, P297) to choose the penalty matrix in the RJIVE, i.e., we set the penalty

to v K where K is the number of instruments used in the estimation.

10



Because our simulated model is exactly identified, unique estimates of 5 and v can be obtained
from g = %; and 4 = w11 — Bme1. We also consider a referee’s suggestion by first estimating Il by
the GMM estimation based on the reduced form using all available instruments, and then solve for
B and v'2. To eliminate ay;, we use both FOD and FD transformations. We calculate the mean
and bias of the estimates, iqr (inter-quantile range), and size for these estimators. Our estimation
results are summarized in the tables 1-4.

Several interesting findings can be observed from the simulation results. First, we note that
there is significant bias for GMM estimators of both v and 3 using either FOD or FD transforma-
tion to eliminate the individual effects. Moreover, the size is severely distorted for GMM estimators
and the coverage ratio is quite poor. On the other hand, if one considers GMM estimator based
on the reduced form of the simultaneous equations models, the GMM estimator based on FOD
transformation appears to perform better in the exactly identified case and has smaller size distor-
tion than the GMM based on FOD or FD (Table 1-2). However, the GMM estimator based on the
reduced form using FD transformation still shows significant bias and distorted size (Table 3-4).
Second, for the JIVE for both v and [, the bias is almost negligible in both FOD and FD cases,
which suggests that the JIVE indeed corrects the bias of GMM estimators as desired. Moreover,
the actual size for JIVE of v and (3 is very close to the nominal value of 5% significance level.
Alternatively, for the JIVE, one can consider the regularized JIVE by Hansen and Kozbur (2014),
which is also found to be asymptotically unbiased and has correct size.'?> One can also observe
that the iqr (inter quantile range) of JIVE estimators are quite close to the GMM estimators for
large N. For example, when N = 5000, the iqr of JIVE for both v and 8 are quite close to the iqr
of GMM estimators in the simulation, which is evident of the fact that JIVE doesn’t inflate the
variance as shown in the paper. Finally, if one considers LIML of Akashi and Kunitomo (2012), it
is observed that LIML estimation is indeed asymptotically unbiased for both v and S using either
FOD or FD transformation, and has correct size. This is because LIML is asymptotically biased of

T
N>

unbiased. X
Finally, for comparison, we draw the empirical densities of vV NT (¥ — ) and vV NT (ﬁ — ﬁ) in

Fig 1 and 2, respectively, of the GMM estimators and the JIVE using FOD and FD transformation
for the DGP when N = 2000 and T = 25. It is clear that the empirical densities of JIVE and LIML
estimators are centered at zero and are normally distributed, while the empirical densities of GMM
estimators are not centered at zero. In all, the findings from simulation confirms our theoretical
findings in the paper.

order while in our simulation, we have % — 0, which in turn leads LIML to be asymptotically

2By following Alvarez and Arellano (2003), it can be shown that the GMM using FOD is consistent and asymptot-

ically normal as long as % — cas (N,T) — oo, but the GMM using FD is inconsistent if % — ¢ and asymptotically

biased of order \/? See Remark 4 for more discussion on GMM based on reduced form.

131t should be noted that even if regularized JIVE behaves similarly to the JIVE proposed in this paper, it is
quite computational extensive, and it becomes more computationally demanding if T is large. For example, for the
simulation when N = 1000 and 7' = 25 with 1000 replications, the cpu time for the JIVE and regularized JIVE are
17491s and 28293s, respectively. When T = 50, it takes days for regularized JIVE to finish.

"Even if the LIML behaves similarly to JIVE in our designs, the JIVE is relatively easy to implement, while
LIML requires extra work to obtain the estimators, such as solving the characteristic function to get the smallest
root (Akashi and Kunitomo (2012, P169)).
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Fig 1. Empirical densities of GMM and JIVE estimators for vV NT (¥ — ) when N = 2000 and T' = 25
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Fig 2. Empirical densities of GMM and JIVE estimators for vV NT' (,B - ﬁ) when N = 2000 and T' = 25
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6 Conclusion

In this paper we investigate the statistical properties of the GMM estimators for linear panel
dynamic simultaneous equations models. Using the alternative asymptotics (N,T) — oo with
TW?’ — k # 0 < 00, we characterize the many IVs bias of the GMM estimators. To reduce the
bias of the GMM estimators, we consider the JIVE and establish its asymptotics. Monte Carlo
simulations show that the JIVE estimator can eliminate the asymptotic bias, hence allowing us to
obtain valid statistical inference. It would be very interesting to extend the above JIVE procedure
to models with heteroskedastic errors, as in Chao et al (2012); and to models with spatio-temporal

dependence, as in Lee and Yu (2014). We leave these topics for future research.
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Appendix: Mathematical Proofs

This appendix includes the mathematical proofs that are omitted in the main paper. In what
follows, we shall let ||A[| = /tr (AA’) denote the Frobenius norm, [|Al|; = Amax (A) , where Apax (A)
and Apin (A) denote the maximum and minimum eigenvalues of A, respectively. We also let C' denote
a generic finite constant, whose value may vary case by case.

A.1 Useful Lemmas

Before we introduce the lemmas, we notice that for the reduced form (2), we have
yit = Ilyi—1 + & + Vit,

then
yie = (Ip =)' &, + (I — TIL) vy,

where L denotes the lag operator. Consequently, we can decompose y;; as
yit = (I —T) 7" &, + wi, (A.1)

where
Wit = (w11, ) = w1 + Vit (A.2)

and wy; is a stationary VAR(1) process under Assumption 2.
As a result, the forward demeaning transformation for (A.1) is given by

ylft = szt = Hw,f;_l + VZ];, (A,3)

and
1 T
szt =C <wit T Z Wis) = CtWit — CtW 41T,
s=t+1
where
1 T
Wi tt1T = Z Wi
T-t s=t+1

Similarly, the first difference transformation for (A.1) is given by
Ay = Awy = LTAW; 1 + Avy. (A4)

Now let’s turn to the lemmas. Lemma (A.1) to lemma (A.4) are used to derive the results of
lemma (A.5) to lemma (A.8), and the latter are used to establish the theorems in the paper.

Lemma A.1 Let d; and ds be N x 1 wectors containing the diagonal elements of P; and Pg,
respectively, so that tr(Py) = dj1y = 2t and tr(Ps) = A1y = 2s, and djds; < 2min(t,s), then
under assumptions 1-4, forl>r >t, p>qg>s andt > s

(m(?’) + m(2)) 2s + mO E (d/d,) ifl=r=p=gq

FE (U%a),itu(b),it) E (diPsu(b)g) Zfl =r=p 7& g<t

m(3)2s ifl=p#r=gq
0 otherwise

COU (u/(a)JPtu(b)/r, u’(a)vasu(b)7Q> =
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and ‘E (dQPSu(b),q)‘ <2 [StE (u%b),it)} 1/27 and

m® = B ufy | m® = (B [ avieal)”.
mB = E [u%a)ﬁ} E {u?b)’it} ,m® = m) — 22— 3),

and (u(a)’t, u(b)’t) takes any pair of N x 1 vectors from random variables ug;; (g =1,2).
Proof can be found in Akashi and Kunitomo (2012).

Lemma A.2 Under Assumptions 1-2, as well as the condition (10), then the following hold for all
t=1,...,T—1.
- 2

-t -0, (5)

(b) )\min (BNt> Z C > 0;

(C) )\min (BNt) > CN> 0; N

> . /
where By = % i1 Zazhy, By = & S oie1 E (zazlhy) with zi = (Y1,i0, 2,005 - - - » Y1,its Y2,it) -

Proof can be found in Lemma A.4 of Lee et al (2015).

Lemma A.3 Under Assumptions 1-4, as (N,T) — oo, we have

T-1 T
1 1
ﬁ E Wé_lpt_lwlf_l = ﬁ E W2_1Wt—1 + Op (1)
t=1 t=2

e pr()u
where Wi_1 = (Wi, ..., wxy) and Do = E (wyw!,) = S QI = 3% 1I* B~1Q, B/~'1I¥.
Proof can be found in Akashi and Kunitomo (2012).

Lemma A.4 Under Assumptions 1-4 as well as the restriction (10), as (N,T) — oo, we have

(a):

T
1
—_— Z Au} P sAu;, = o, (1),
NT —

the above results still hold if we replace uyy by uay, Vi or voy.

(b):
. I
UNT Z u) Py —p 05 VR,
=1

similar results can be derived if we replace uy s by gy, Vi or vay
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Proof. (a) In order to show this, we first notice that

T T T
1 1 1
NT Z E (Aull,tPt—ZAuLt) = ~T Ztr (E (AullytPt_gAuLt)) = N7 Z E (tT‘ (Aull,tPt—2AU-1,t))
=2 t=2 t=2
1 I 1 T
= 7NT ZE (t?” (Pt_QAULtAu,Lt)) = 7NT Zt?” (E (Pt_QAuLtAu/l,t))
t=2 t=2
41 - ! 2Jul a
-~ NT Ztr (B (Pi—2Ei1 (Aui Aul,))) = Ni“ Ztr (E (P;_2))
t=2 t=2
202, & 202, I
= NT ; tr (E (Pt72)) = NT ; E (t?” (Pt,Q))
202 1 T T
= —= 2(t—1):0<>
NT t=2 N

= o(1),

under restriction (10). Also, we have

T
1
Var | — Z Au tPt2Au1,t)
(NT =2

T
1
= N2 > E(AuyProAuiAuy Py sAu )

s,t=2
1 <« 2
= w73 Y E (A Py oAuy Al Py pAuyy) + NoTE > E(Au) Py yAuy Au) Py pAdAY)
t=2 s<t

where the first term can be shown that

T T
1 C
N2T? > E(Au} P oAuy Aug P sAuy,) = N2 D £ +o(1)
t=2 t=2
= o(l),
by using the results from lemma (A.1). Similarly, for the second term of (A.5), we have
2 C <
W Z E (Aull’tPt_QAu:[’tAulLsPS_zAU.]_,S) = W Zt

s<t t=2

= o(l).

Consequently, we have

T
1
Var | — E Au] tPt_gAu1,t> =o0(l),
(NT t=2

as (N, T) — oo, which in turn gives
1 I
— Z Au’l tPt,QAlll t = Op (1) s
NT p
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as required.
(b) For this result, it is obvious that

T
1
INT Z E (v} Prquy) =05 Ve +0(1),
=1

by following the above derivation. For its variance, we notice that

T
1 /
r| — Z u1,tPt—1u1,t>
( VNT =

1 T 2 T 2
= F|— Zull tPtlul,t> - 7ﬁ Z (u] Pi_qury)
( NT t=1 t=1
T
= NT ZE u) Prow ) P t) NT ;E u) sPso1ug sup P t) — ai 1k+o(1)
= 0 (1) )
since
1 I
NT Z (uy Proqug e Py oquy )
1 & 1 &
— Ni Z ov 111 tPt 1u1 s 111 tPt 1u1 t) + ﬁ ;E (u’LtPt,lul,t) E (u’LtPt,lul,t)
T T
C
S WS SN
t=2 =2
= 0(1)7
by using the results of lemma (A.1). Similarly,
2 2
NT Z E (u} (Psquy guy Proqug ) = NT Z B (u] Ps1u s Es (] Prqury))
s<t s<t
SO'i 1
= i ~1)(s—1
LS (1) (s 1)
s<t
40ﬁ1 T
= dt-1)>+0(1)
t=3
= ailm +o(1)

consequently, we have

T
(\/7 Z 1 tPtluLt) — 0,

as (NV,T) — oo, which gives

/ 2
wy Protury —p 0y 1V,

H
N
1M
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as required. m

The following two lemmas provide the theoretical results needed for the GMM estimation based
on FOD and FD.

Lemma A.5 Under Assumptions 1-4, as well as the condition (10), for the FOD transformed
model (6), as (N, T) — oo, we have
(a)

T—-1
1
T S Y/ P YY), - DTyD,
t=1

where To = > 22, I'B~1Q,B'~1I" and

1 7w 1 Bryg >
D= = .
< 0 ma > ( 0 72

(b)
Lm0 ! 2 0
e Y P;_u}, —4q N (0,07 ,D'TyD) — K.
\/ﬁt=1 t—1¢t =181t 77d ( u,1 0 ) <Ju,12 >\F
Proof. (a) We note that
= " =
—= Z Y{il.tPt—1Yt_1.t = 73 (Wio1q — Wt—l-t)IPt—l (Wio1t — Wi_14)
NT £ NT £
| Tl | Tl
= N7 ; Wi 1 P Wiqy — NT ; Wi 1P Wi_1y
= =
NG V_Vili—l-tPtflwtfllt + == Z V_V;g_l,tPtflv_thl.t + 0p (1) ,
NT pt NT p
where W;_1;, = (wis—1,wo;) with w;; = (wﬂt,wj,gt,...,wj,m)’ for 7 = 1,2,

= T T _ _ . .
W, 1, = (T%Hl Yot Wik, ﬁ D emtil W27t> = (W1—17, Wo,i1) and w;; is defined in (A.2).
It is obvious that

Wit = (Wii—1,Way) = (Wi—1, T21W1—1 + T22W2 1 + Vo)
= Wt_lD + (0, V27t) 5 (A6)
where
D:<1 7T21>:<1 5’722>’
0 7292 0 Y292
and
Wit = (Wigar, Waur) = (Wi, 71 Wi 17 + T2oWa 117 + Vour)
= Wi _irD+ (0, ‘_’2,tT) , (A.7)
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Then substituting (A.6) and (A.7) yields

1 T-1 / ~ 1 T—1 o / . )
NT ; Wi 1./PoaWiy = NT 2~ [D'W;_; + (0,v2)'| Pi—1 (Wi—1rD + (0, V2,7))
_ LT—lD/VV/ P, W, D+17§D/Wl P 1 (0,¥0.r)
NT t=1 e NT — t—15t=1\U, V2T
= / ) | T / ]
+ﬁ 2. (0,va:) Py (0,Vor) + NT ; (0,va:) Pi1(0,%2,7),

and each term can be shown to be o, (1) by using the results of part (a) of lemma (A.4), for instance,
the first term is given by

T—1 T-1 T

1 - 1 1

NT g D'W, P, W, ;7D = D’ (NT E Tt g W;lPt_1WS> D
t=1 s=t

t=1

T-1 T
_ p( L / 1 st
= D (NT;thPt_lth_t+1;H D +o,(1)
logT
~ 0,(%20) —0,0).

as T' — oo. Similarly, all other terms can be shown to be o, (1), which yields

1 T-1

ﬁ Z Wé_l,tPt,lv_Vt,l.t = Op (1) .
t=1
By using the same argument, we can show that

T-1
Z Wi 1 PioaWie = 0,(1),
t=1

-1

1 - -
7ZWL1.tPt—1Wt—1.t = op(1).
NT p

1
NT
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Combining the above yields

T-1
ZYt Py = %ng_l,tpt,lwt,l_ﬁap(l)
e
-~ NT e [D'W;_; +(0,v,)| Pry [Wi 1D + (0, v2,)] + 0 (1)
= iT_lD'W’ P WD+ ZDW P;_1(0,vay)
NTt: t—1Ft—1VV¢-1 P11 (0, vy,
1 T-1 1 T—1 /
NT; (0,vas) Pio1 Wi 1D+NT;(0,VQ¢) Pi 1 (0,va:) + 0, (1)
= 1y lD’W/ P, W; 1D +o0,(1)
NT t:1 t—1Et—1VVi-1 D
— pD'TD,

by using the result of lemma (A.3) and the fact that

T-1 T-1

1 / ! 1 /

NT 2 D'W (Pi1(0.v2e) = 0,(1). 57 ; (0,v24) Pr-1W,_1D = 0, (1),
1 T-1

ﬁ (07 V2,t)/ P (07 V2,t) = 0p (1) )

o
Il

1

which holds since, for example, F [ﬁ tT:_ll D'W,_,P;:_1 (0, v27t)] =0, and

T—1 T—1 !
E (NTZDWt P (0, m)) <NTZDWt Pi1 (0, th)>

T-1

= ﬁ Z D'E (W}_1P;1(0,va,) (0,v2:) P. W, 1) D
o

= N2 tz; D'E (W;_1P;_1(0,v2;) (0,va:) P,_1W,;_1) D
c T 1

< N2T2 ZDE W, P,_1W;_1)D =0, <NT>

A similar argument can be applied to all other remaining terms.
To summarize, as (N,T) — 0o, we obtain

NT Z Yt 1 tPt—legf)l-t —p D'ToD, (A.8)
as required.
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(b) By using the result (A.6) and (A.7), we obtain
L Ny
W Z thll-tPt—lu{t
VNT =
= 0
_ nr f
= = Z W, Pruag
VNT =

1 -
~ UNT Z [Wi_1D + (0, va) — Wi_17D — (0,%2,7)] Py_y (w1 — 1.7) + 0p (1)
t=1

T-1 _
1
— 7WZD/W;_1Pt_1u1,t— Z (0,vay) Pi_quy; + o0, (1), (A.9)
=1 t=1

where the last identity holds since all remaining terms can be shown to be o, (1) . For instance, for

the term FZt 11DW1’5 1rPi—1u1, we have
5( V)
1

r T—1 T
1
- D Y EwawEﬁvtB<
VNT = T_t+1s:t

B<?>+%ﬂ)

T-1 1 T— 1 T
g Z D,Wé—lTPt—lul,t = D/ Z Z W;Pt_th
=1 _VNTt:IT_t+1s:t

= O

L) o)

1 T-1 1 T
= D VP,V

T (log T)?
N )

:Op

which will be o, (1) under alternative restriction (10). Similarly, we can show all other remaining

terms are o, (1).
For (A.9), it is obvious that the first term will contribute to the limiting distribution as (N,T") —

o0
T-1

—— Y D'W, P, juy; —4 N (0,07, ,D'T(D),
=1
and the second term will contribute to the asymptotic bias under (10) with

-1

1 1 — 0
(0,v2¢) Py_q1u = — =
VNT ; 2¢) Pr-1us VNT ; ( vy Prouny ) Z < thPt 1y )
0
K7
v < Ou12 ) Ve
by using the results from part (b) of lemma (A.4). Combining these results yields

T-1

N
UNT -

as (N,T) — oo under alternative restriction (10). m

0
Yt({){.tPtflu{,t —a N (OaUZ,ID/FOD) B < Ou12 ) v,
u,

||M
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Lemma A.6 Under Assumptions 1-4, as well as the condition (10), for the FD transformed model
(8), as (N,T) — oo, we have
(a)

T
1
~T § AY, 1 P oAY 14 —p D' (I — 1) T (I —II') D
=2

where D,II and Ty are defined in lemma (A.5).
(b)

1 _
——= > AY| . Pr2Auy; — N (by, 0% D' (I 1) [(I — ) T + T (I = )] (12 = 1) D),

2
= v FuatBouiz ) 0
bo = [D < Ou21 ) < 20,21 >] v

Proof. (a) To show this, we first notice that

AYi 14 = AW = (Awi—1,Away) = (AW 1, T21AW1 1 + To2Awg 1 + Avay)
(Awyi—1,Awa ;1) D + (0, Avyy)
= AWt_lD + (0, AV?,t) y

where D is defined in lemma (A.5). Then

T
1

— Z AY; P oAY 1y

NT —

T
1
= 7 2D (Wi = Wi 5)'Pry (Wi = Wy ) D
=2
T | I
NT ;D, (W1 — W, 9)' P2 (0, Avay) + NT z; (0, Avoy)' Prg (Wig — Wy _2)D
| I
+—=% (0,Ava;) Pt (0,Avay)
NT P
| I
= ﬁ Z DI (Wt—l — Wt_Q)I Pt_Q (Wt—l — Wt_g) D + Op (1) y (Al())
t=2

with

T
1 0
7> (0,Avo ) Py5 (0, Avyy) = < > ’
NT ; P 2 NT e Avh ProAvy

where it can be shown that

T
1
37 (0, Ava) Prs (0, Avay) = 0, (1),
NT pa
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by using the results from lemma (A.4), and

T
1
NT Z (Wi1 — Wi 9)' Pig (Wi — W)
=2
1 T 1 T 1 T
_ ! ! /
= ﬁ tz_; Wtflpt—QWt—l - W tz_; Wtilpt_gwt_z — ﬁ tz_; Wt72Pt—2Wt—l
Lz
+r Z Wi P oWy o
NT —

T
1
(IIW;_y 4+ Vi_1) Pio (Wi oIl' + Vi) — NT ; (IIW;_y+ Vi_1) P, oW,

1
Z‘H
~

Mﬂ

t

[|
¥

T T
1 1
- ZWQ_QPt—Q (Wi_oll' + Vi) + — ZWQ_QPt—QWt—z
NT = NT P
1 & 1 & 1 &
= — IW! _P; oW, oII' + — IwW'!: _P; 5V;_ _— V! P oW, oIl
NTtZZ t—oFt—2 Wy 2 +NTtZz t—9 t2t1+NTtZQ t—1Et—2W¢ 2

T T T
1 ’ 1 , 1 ,
+ 57 ; ViaPiaVi - tZ:; MW, 5P Wi — <o ; V! P, oW s
T T T

1 1 1
“NT Z Wi oP oWy oIl — — Z Wi P oV 4+ — Z Wi P oW o
NT — NT P NT p

T T T
= =7 ; W, 5Py oW, oIl — ; W} 5P 2 Wip — <o ; WPy oW, oIl

T
1
+N7T ; W,’:_QPt,QWt—Q + Op (1)
= TICoIl — Ty — Doll’ + T + 0, (1)
= (IQ — H) F() (IQ — H/) + Op (1) ,

since from (A.2)
W, =W, LIl'+ Vg,

and by using the results from the lemma (A.4).
Substituting the above back to (A.10), as (N,T) — oo, we have

T
1
7 > AY] P oAYy 1y —, D' (I — )T (I, — 1) D,
t=2

as required.
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(b) To show this, we note that

ZAYt 1tPt 2Au1t

VNT t=2
T T
= \/t Z AWt 1P oAuy Tt —— Z 0 AVgt Pt,QAuLt
T T 1 T
= \/t 22 W’ 1Pt oAuy t— 22 QPt gAul’t + W ; (0, Avy t) P;_oAuy it
T T
— fz (Il — L)) W, _oP; sAug ;s + \/tZD’Vg_lPt_gAuLt
’ =
— Z 0 AVQ t Pt_gAuljt, (All)

F

where the first term will contribute to the limiting distribution and the last two terms will contribute
to the bias. For the second term, we have

1 T /
INT >ot—a Vi1 Pr2lu, )
1

T
1
—— > D'V, P sAu, =D
VNT &7 T ! A S, vh  Prs Ay

where
1 r 1 T
! /
P — Z vl,t*IPt—ZAULt = - Z Vl}tflPt—Zu]_,t_]_ + Op (1)
VNT t—2 VNT =
1 T
/ !
- T N7 Z (ul,t—l + Bu2,t—1) P, ouii1+0,(1),
VNT =
= p— (001 + Bouiz) VK,
and

T
]‘ / /
JNT E Va1 Prolugy Vo1 Proui1+0p (1)
t=2

T
Z uy, 1 Prooui1 +0, (1),

by using the results of part (b) of lemma (A.4) then

T
1 2
\/ﬁ 2 :D,V{t—lPtf2Aul,t —p -D’ < Tu1 t Bou,2 ) JF.
t=2

Ou,21

Similarly, we can show that

1 <& 1
N (0,Ave) Py oAuyy = ———

[M]=

0
(0, Augy) Pi_osAugy —, ( > VE.

204,21

[|
I\
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As a result, we have

T T

1 1 ~

\/ﬁ E DV;_1Pt—2Aul,t + \/ﬁ E (0, AU2,t)/ Pt—2A111,t —p bo,
t=2 t=2

where by denotes the asymptotic bias term and is given by

= 2 + u O
by = — [D’ < "“vlauff 2 ) - < 2o ot )] V. (A.12)

which in turn yields

H IQ Wt 2Pt 2Auy t T bo + op ( ) (A13)

IMﬂ

. I
—_— Z AY; Py oAuy, =
Ti=

and for the first term, it is obvious that

E [W:foPt—QAul,t] = 0,

3-
E

&~
U
(V]

and

T
1
(\/— Z W£2Pt—2Au1,t> =NT Z E [W; P sAu; Au) P yW, o]

T
E [Wi P sAuy Auy Py oW, o] + 72 (Wi _oPi oAuyAul, Py 3W, 3]

2‘)—!

T
1
7T Z FE [Wéfgpt_;gAuLt_1Au,17tPt_2Wt_2]

T
1
= 202, — NT ; E[W,_ P oW, o] — 02— 7 t; E[(MIW,_5+ V}_5) Pi_sW,_3]
1 T
_Ui,lﬁ Z E[Wi 3P;_3 (W _sIl' + V)]
t=3
1 & 1 <
= 200157 Y E[W; ,P oW 5] — Cud T Y E[W, 3P, 3W, 3]
t=2 t=3
1
WNT > E[Wi_ 3P, sW, 5II']

= 205,19 — 051y — 0% 1 ToIl' 4+ 0 (1)
= o0 (Ip =)D+ T (I —11')) .

As a result, we have

IMH

1_oPioAuyy —q N (0,00, ((I; —I)To +To (I —1')))
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by following Akashi and Kunitomo (2012), which in turn gives

T
F S AY] ,PisAuy, — N (bo, 02\ D' (I, = T0) [(I — ) Ty + T (I, — )] (I — IT) D) :

(A.14)
as required. =

The last two lemmas provide the theoretical results needed for the JIVE estimation based on
FOD and FD.

Lemma A.7 Under Assumptions 1-4, as well as the condition (10), then for the JIVE based FOD,
we have

(a)-
1 =t

N

-1
Z yzf,;flizgt—l (Zf‘,—lzt—l) Zit—lyzf,tl-t] =op(1),
i=1

(b).

N
1 f z -1 f ( 0 >
z /. Zip_1UY 5, — K.
T po ;y” 1-t%it— 1 —14t 1) w—1%1 44 ~7p T2 \f

N
-

Proof. (a) We notice that

] TN . =
E : 1 - f _ E :
NT t=1 Li=1 yi,t_l‘tzgtil (Zgilzt_l) Zit_lyi,t_l.t] NT t=1

N -1 N
dic y{,;tlzgt—l (Zé—lzt—l)l Zit—lg}{{,itl Die 13/{;; 1251 (Zt 14— 1)1 it—lgg,it
N - N - )
>ic y2,itzfit—1 (Z:f—lzt—l) Zit—1Y1 jt—1 dic1 Y 1tzzt 1 (let 12— 1) Zit—1Y3 it
(A.15)

then we need to show that each element of (A.15) has zero limit. To this end, we first notice that
for the (1,1)-th element of (A.15), we have

;] 1N
f ! / -1 f
NT Zyl,it—lzit—l (Zi1Z¢1) Zit—1Y1 11
t=1 i=1
=
— f ! / -1 f
- NT Zwl,it—lzitfl (Zt_1Z) Zit—1W1] 41
t=1 i=1
= i ) i i .
- N2T Z (Wiit-1 — Wiir—1)" Zig—y | ( BNe-1 — Byne—1) + Bni-1)  Zi—1,
t=1 i=1

where Byy_1 = % Z;VZI zjt_lz;-t_l and By;_1 = % Z;VZI E (zjt_lz;t_1> . Similar strategy has also
been used by Lee et al (2015).

Si Bni—o— B B _I—B‘l LBl (VN (Byyo—B By
mce Nt—2 Nt—2 | + DNt—2 = Dp;_ f Ni—2 Nt—2 Nt—2 Ni—o T
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| TN ) ) §
N2T Z (wiit—1 — ’LTJl,itT—l)Q zh ((BNt—l — BNt_1> + BNt—l) Zis_1
t=1 i=1
;] TN
- NeT Z (wit—1 — “_leiltT—l)2 Z;t—lBKf%—zzit—l
t=1 i=1
| TN - N N
N2T £ ; W1, it—1 — u‘)1,z'tT—1)2 zgt_l\/iﬁBX/%_g (\/ﬁ (BNt_Q — BNt_2>> Bz?/%_gzz'tq
t2 1 T-1 N
O (N> NQTZ (wt—1 — Drir-1)° iy 1Zit-1
t=1 =1
= L1+ 1+ Is,
For term I,
c =2 o 11X
1Ll = wor > (wiit-1 — Wrar—1)’ 2y 1Zi1 < N Z [(wy,it—1 — Wi ier—1) Zi—1 ||
t=1 =1 t=1 =1
=
- (T tz) —o (A.16)
t

=

1

and for term I,

T-1 N
1 -~ - .
’12| < NzT Z Z W1 5¢—1 — W1 57— 1) thflﬁBNifl (\/N (BNt—l — BNt—1>> B 1Zzt 1
t=1 i=1
-1 LN
= N3/2T Z HBNt 2” H\/N (BNt—Q - BNt—2> H N > (w1 — rir-1) zi |l
i=1
C 1 T-1 1 N 2 1 T—_1 i )
S N\ T ; (N z; l(w1,it—1 — W1it7-1) Zit—1H2> 7 tzl H\/N (BNt_Q —~ BNt_2> H
= i= =

C 1Tfl 1Tfl
— 4 2
(e R

3 K
= Op(z@)zOp(w)
= 0,(1). (A.17)

by using the results of lemma (A.2). Similarly, we can show that

I3 = op (1)
Combing these results gives us
T-1 N )
Z Zyl it— lzzt 1 z, 1Zt—1) Zit—ly{,it—l =op(1).
t 1 =1
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as required.
Similarly, we can show that

N

1 -1

ﬁzy{,it_ﬂgtq (Z) 1Zu—1)  zi—1ydy = op(1),
=1

N
1 -1
NT Z yg,itzgt—l (Zi_1Z¢-1) Zitqyiit = o0,(1),
i=1
By combining the above results, we obtain
T-1

1
NT 2
t=1

N
/ -1 /
Z ylf,tq.tzgt—l (Zé—lzt—l) Zit—lyzf,tl-t] =op(1),
i=1
as required.
!/
(b). We first note that yzf,tflqt = <y{7it71,y£it) , then

T-1

D

N
fr ! / -1 f
E Yit—1t%it—1 (thlzt—l) Zit—1U7 4t
i=1

N -1
( doic y{,itflzgtfl (let—lztfl) Zitfluf,it )

N f / -1_ f
>t Y2 it%it—1 (Zt—lztfl) Zit—1U7 5

For the first element of (A.18), we notice that, from the reduced form (2) and (A.3),

~+
—_

S

3- -
~ N~

t=1

yzft = sz'; = leftfl + Vlft, wit = w1 + Vi,

then we have

f _ f _ f f f
Yijg—1 = W1 = T1W] 5o T T12Wh 5o T V] 44
= T (Wiit—1 — Wier) + Tiace (Wa,ie—1 — Waier) + ¢ (Viit—1 — V1ier) 5

_ 1 -1 _ 1 T—1 .
where W1 i1 = 775 D sy Wiis and Wour = 77 Y . Wais, and since

H:(Wll 7r12>:<7+5’¥21 5722)
T21 722 Y21 Y22 ’
Vit = Ui + Pug = (1, 5) ug,

v =Bl Wit ) _ 1 B urge \ _ [ uiie+ Buza
" U2, 4t 0 1 Uit U2, 4t '

and

because
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Then, we have

T-1 N
1 , _
W E :yl,itflzit—l (Zt—lztfl) Zit—1U7 54
NT = &
=1 =1
, TN
— — / Z/ Z - —
= T11C (wl,itfl - wl,itT) Ziy_1 ( t—1 tfl) Zit—1 (Ul,it - Ul,it+1T)
NT =1 i
=1 =1
T-1 N
1 . T / 7. .7 . . 7
+— T12¢7 (W1 it—1 — W1ier) Zig—_q (Z4_1Zi—1) Zig—1 (u1,it — Wi ies17)
NT — “—
t=1 i=1
;| TN
2 — / _
+—= E & (viit—1 — Vraer) 2y (Zy_1Ze—1) " zip—1 (Wit — Ui ie417)
NT t=1 i=1

= I1 + I> + I3, say,

For the first term I;, we have

T-1 N
1 _ -1 _
E(l,) = E <\/W ; ;77110? (wiit—1 — Wier) Ziy—y (Zy—1Zi—1) " Zip—1 (w1t — Ul,it+1T))

T-1 N
T11 Z (— ! ! - u
= — E (@1t 172—1 (Zy-1Zt-1) " Zir—1 (w1i — ul:it“T)) +oll)
VNT t=1 i=1
o, ToL N Tl
11
N VNT =1 ZZ—; T—t s=t b (wl,isuln‘tz;tfl (Zt-12:1) Z”_1>
o To1 N 1
11 ; B
+ Z 2 Z E (wl,z‘slul,z‘szzit—l (Zt—lzt—l) Zit_l) +o(l)
W t=1 i=1 (T - t) S$1282
= I+ Ih+o 1)7
where
- T-1 N 1 T-1
11 B
Ly, = — Z T_—¢ E <w1,¢SU1,itZ§t—1 (Zt-1Z¢-1) Z”’1>

T-1

T-1 N
1 —
= - T B (Z i1 (Zi_1Z4-1) ' Zit1> Z (L,0) I E (varviy) (1,0

VNT t=1 —t =1 s=t
0 &R 2
VNT — T—t

under restriction (10). The above holds since for s > ¢, from (A.2) and (A.19),
wis = I Wiy + vig + Tvigg + -+ + 117 vy,
then
E(wiisui) = (1,0)E (wisvly) (1,-8)
= (LOI'E (vievy) (1,-8)',

34



and since the process is stationary by assumption 2. Also, we have

N N
E (Z Ziy 1 (Z2_1Zt—1)_1 Zitl) = tr (E <Z 7 4 (Z;_1Zt71)_1 Zitl))

i=1 =1
N
= Z E (tr ((Z;,lzt—l)_l Zz‘t—ﬂét—l))
=1

r(E ((Z;_le)*l (Z;_lth)))
r (I2t)
= 2t.

I
S

|
-+
¥

For I;5, we have

N
1 _
hy = \;T% Z Z m Z E (wl,i81ul,iSzZ;t—1 (Zg—lztfl) ' Zz‘tﬂ)

81282

N
1 _
- Wﬁ;T > (T - t)zE (Z Zhy1 (Zh1Z1) Zit—l) > (L0) I 2 E (vigvl,) (1,0)
i—1

81282

- LY e X 00 ) (L)

Consequently, we have
E(LL)=o0(1).
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For the variance of I;, we notice that

Var (I)
2 T-1 N )
NI%VUW’ ( Z (wi,it—1 — W1,i7) Zig—1 (Z1_1Zs—1) " Zig—1 (U1t — Ul,it+1T)>
t=1 i=1
_ -1 _
Lﬂ Z Z o (Wit -1 — Wiy, 1) 25y, 1 (24, 1%ty —1) 1Zi1t171 (W16t — Uliyty4+1T)
NT t1,t2 i17i2 X (w1712t271 o wlvi?t?T) Z;2t2,1 (Z22—1Zt2*1) Zigty—1 (ul,iztz - al,iztz—l—lT)

-1 _
- / /
7711 Z Z ( (Wiity—1 — W1y T) 2oy, 1 (2, _1Z,—1) Zity—1 (U1,ity — Uity +17) )

_ —1 _
Ti~— X (W1ity—1 — WiteT) Zhgy 1 (Zhy1Zty—1)  Zity—1 (U,ity — Ul ity 17)

: T / 7. 7 -1 g )
7'('11 z : Z w1721t1—1 _wl,lltlT) Zi1t1—1( t1—1 tl—l) Zirty—1 (ulv“tl ULty +17

_ -1 _
t1 t2 11742 (wlviﬂz—l - w17i2t2T) Z{igtg—l (Zégflztz—l) Ziyty—1 (ul,ith - ul,igtg—i-lT)]
) ! 1/272
c I (wiit—1 — Wiitr)” 24 (% (Z}_1Z¢) ) Zit—1
= N3TZ Z _ 2, 1 /e —1\ 1 +o(1)
i=1 | ¢ (u1,it — Unit17)” 25y <N (Z}_1Zy_1) ) Zjt—1
N
C _ 1/2
< NIT ; Z [ ( (Wiit—1 — B1ae1)° 2oy 1Zit—1 (U1ie — T igrT) Zétqzz‘t—l)} +o0(1)
c < n2]\ V8 ’
_ 8 _ 8
< AT ; ; ([ [ W1,it—1 — Wi, T) } E [(Ul,it — Ulit4+17T") } (E (2i;_12it—1) ) }) +o(1)
C 2
< =7 Zt:t +o(1)
= o(1),
since [(wut_l — ﬁ)l,wT)B} and E [(ulﬂ-t — a17it+1T)8 are finite under assumption 1.
As a result, we can conclude that
I =o0,(1). (A.23)
Similarly, we can show that
Iy =o0,(1). (A.24)
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For I3, we notice that

T-1
1 _ -1 _
E(I3) = — Z E [(Ul,it—l — Orir) Zigq (Z4_1Zy1) Zig—1 (w1 — Ul,it+1T)} +o(1)
NT = 5

| TN Tl .

- Z E {Ul,islul,itzétq (Zy_1Z:1) Zit—l]
NT =3 T—t s1=t
= 1

+— Z 2 Z E [Ul,zslul isoZit—1 (Zt 1Zt 1) Zjt 1j| +0(1)

NT t=1 =1 (T'—1) 51,52
;| TN

= ——F Z —F [Ul i1,z (21 Zy 1)71 Zit71:|
NT =5 T-t
;| TN 1 .

+— Z E [Ul,itul,itzgt_1 (Z}_1Zi1)" Zz’tﬂ} +o(1)

NT == (T-1)

= 0 (1) )

and we can also show that
Var(I3) =0(1),
by following the derivation above.
Combining the above results, we obtain
] TN .
— SN Tyl iz (2102 0) " zioau], —, 0. (A.25)
t=1 i=1

For the second element of (A.18), we first notice that

f _ f f f f
Yoi = Way = Vo1Wq 31 T VoaWs i 1 1 Vo y

= Y916t (W1,it—1 — Wi ier) + Vooct (Wait—1 — Waur) + ¢t (V2,58 — V2it417T) 5

then we have

T-1 N

1 _
\/7T Zzyz i Zit— 1 zZ, 1Zt71) 1Zit*1u{,it
t=1 i=1
T-1 N
2’7210? (W1,it—1 — W1,T) Ziy_1 (Zé_lzt—l)_l Zit—1 (U1t — U1 it41T)
t=1 i—1
T-1

2

ik

_ “1 -
Vo€t (Woit—1 — Woiur) Ziy 1 (Zy_1Ze—1) " Zip—1 (U1, — U it417)

+

W
Il
=

=1

v
M-

s
Il
—

_ ~1 _
Z (Va,it — V2,it41T) Ziyp_1 (Z}_1Z41)  Zir—1 (u1it — Griesar)

+

1
= 14+ I5 + Ig, say,

-+
I

it can be shown by using the derivation above that

I4 —p 0, and I5 —p 0. (A26)
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Using a similar argument for Ig, we obtain

1
ug it ity (Zy_1Ze—1)  2Zig—1 + op (1)

M-

1

T
,_.»—l
~
Il

T-1 N
1 2 _ —1 _
Is = INT 2 ; i (va,it — V2,it417) Ziy—1 (Zi_1Z¢—1) " Zig—1 (Uri¢ — Unit17)
, TN X
= N7 2 ;112,itul,itzét1 (Z}_1Z41) " zit—1 +0p (1)

. Tl

vVNT

Ou,12

= Z 2t 4+ op (1
- po-u,12\/Ea

since vy 4 = ug; from (A.22) and by applying lemma (A.4).
Consequently, we can get

’ﬂ

-1 N
7! -1 f
E :E : ZZtZzt 1 Z,_ 1Zt—1) Zit—1U7 54 —p Uu,12\/g> (A.27)
=1 4=1

which in turn yields

T-1

—_

VNT

N
fr ' / -1 f 0
E :yi,tq.tzit—l (Zt—lzt—l) Zit—1UWa | 7p |, vk,
t=1 Li=1 v,12

as required. m

Lemma A.8 Under Assumptions 1-4, as well as the condition (10), we have
(a) For FD case, we have

1 T

NT

-1
Z Ay;,tflizgth (Zéfzzt—z) Zit—2Ayi,t—1't] =op(1).

t=2 Li=1

(b) For the FD, we have

T N 1 o2 + Bo 0
NT ZZAy;,t—l-tZ;t—Q (Z;—2Zt*2) Zit—2 AUt —p = [D, ( " . > N < ﬂ Ve

Ou21 200,21

Proof. (a) To show this result, we first notice that

A » 1 I
NT Z Z Ay;,t—lqtz;t—z (Z2—2Zt—2) Zit—QAyg,t—Lt] - NT Z
t=2 Li=1

=2
~1 1
Ef\%\} Ay1it—12 o (Zé_gzt—2)_1 Zit—2AY1,it—1 ZZ]\%\} Ay1it—12 o (Zi_gzt—2)_1 Zit—2AY2 it
Sy Ayaizl, o (2] _0Zi—2)" zi—2Ay1it—1 Sy Ayz izl o (2 _3Zi—9) " zip—2Ayas
(A.28)
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as before, we need to show that each element of (A.28) has zero limit. For the (1,1)-th element of
(A.28), we have

/ / —1
Ay1it—12Zy_o (Z1_2Zi—2) " Zit—2Ay1i—1

1M
M= 11

t=

e N2 g (7 e )Ly
LA s (A - -
(Wiit—1 — Wiit—2)" Ziy_o (Zi _9Zy—2)  Zir—2

I
Z‘H Z‘H Z‘H
~ N~ ~
N

t=2 1=1
T N 1 T N

_ 2 / / -1 2 ’ / -1

= > Y wii 1zl o (ZioZi2) Zira+ NT >N wii oz o (Zh 5Zi-2) Zita
=2 i=1 =2 i=1

! / —1
T E g 2w i1 W1 it—22y_o (Zy_9Zi—2)  Zit—2,
=2 i—1

by following the derivation of part (b) of lemma (A.7), we can show that

1
NTZZwMt 125t Zt 2L 2) ziiz = 0p(1),

t=2 1=1
| IX »
NT Zwlzt 2%t o Zt 2Lt 2) Zit2 = 0p(1),
t=2 i=1
, LN )
ﬁZZle,it—lwl,it—QZ;t_Q (Z}_3Z2) zit—2 = op(1),
t=2 i=1

which gives

T N
1 -1
NT E E Ay1it—125_o (Zi_2Z¢—3) " Zit—2Ayri—1 = 0p (1)
t=2 1=1

2
Similarly, we can show all other elements of (A.28) have zero probability limit, i.e.,

T N
1 -1
NT Z Z yl,tq.tzgtﬂ (thfzzt—z) Zz‘t—zﬁyg,tA-t =op(1),
t=2 =1

as required.
(b) In order to show this, we notice that

T [N
1 -1
ﬁz ZAy;,t—l-tZ;t—Q (2} 2Zy—2)  zip—2Auy g
t=2 L
N A 1
- ﬁz Z < A;’;Zl > Ziy_o (Zy_9Z4—2)  Zi—2Duy
t=2 Li=1 ;
A 1
- ﬁz ZD/AWivt—lzétfz (Z}_9Zi—2)  zi—2Auy
t=2 Li=1
1

N
-1
> (0, Avg i) Zhy o (Zh 9Z ) zir—2Auy

i=1

, (A.29)

T
HUNT 2

=
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which holds since

(Awut—l) _ ( Awy i1 )+< 0 )
Aws i mo1 Awy jt—1 + T2 Awa i1 Awg it

A 0
D sz,t—l + ( AUZ,it > )

by using (A.4).
For the first element of (A.29), we have

T
NTZ

t=2

N
ZD'AWM 1zzt Z(Zt Y/ 2) Zi—2 AUy Jit

T [N
1 ' / -1
= D' D wirazh o (2] 5% 2) ziow itl]
NT t=2 Li=1
L TN X
= -D 7%2 > Wiscauri1Zi o (Zi_oZi-2) it 2]
NT t=2 Li=1
. I
= —-D'B'Q,(1,0) — ) 2(t—1)+0,(1
VL0 A=Y 2= 1)+ 0y (1)

t=2

— ,—-D'B7'Q,(1,0)' vk (A.30)

as (N,T) — oo and under (10), since

E(Wit—1uri—1) = FE (vig—1uj_y)(1,0)
= B7'E (wi}) (1,0)
_ B—lQ (1 0)/ _ ( 0_371 +/30u,12 )
- u 9 - I

Ou,12

and by following the derivation of (A.4).
Similarly, for the second element of (A.29), as (IN,T") — oo and under (10), we have

T [N
1 0 1
JNT Z Z ( Avs iy > Zis_o (Zy_9Z4—2)  Zi—2Duy
t=2 Li=1 ,
0
= -1
( ,T{]T Zthz Zz]\;l Avg it Au iy (Zé_zzt—2) Zit—2 )

_ -1 / 0
= (0, 1)B Qu (1,0) ( ﬁzz’:22(t_ 1) ) +0p (1)

. p( 07 >\/g (A.31)
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since

E (Avy i Auy i) = 2E (voipuni)

2(0,1) E (viuy) (1,0)
2(0,1) B~ E (u;ufy) (1,0)
2(0,1)B71Q, (1,0)

== 20'%21.

Combining (A.30) and (A.31) yields
T

1TZ

t=2

2
+ B0y 12 0
P [ ( Ou21 20,21 Ve

1
E AY; ¢ 1429 (L 92 2)  zip—2Auiy
=1
as required. m

A.2 Derivation of GMM based on FOD

In order to show the results of Theorem 1, we notice that

T-1 _
'NT FOD 1
(0GMM 0) (NT E Y{il.tPt—lY{_l.t> E t— 1tPt 11,11 ) (A32)
t=1 =1

where for the denominator, by using the results in part (a) of lemma (A.5), we obtain

T-1 T-1

1
Z Yt 14P - IYZ 1t NT Z Yg—l-tPtletfl-t +op (1)

t 1 t=1
— ,D'TyD, (A.33)

where I'g = Z;’io o, = 220 B0, B~ 1" and

(1 w1 Bryg
oo (L)< (1 7a) o

For the numerator of (A.32), by using the results in part (b) of lemma (A.5), we have

1
Z Yt 1 tPt—lu{t = o Z Y 1P +op (1)
VN VNT =
0

Ou,12

— 4N (0,02 ,D'T(D) — ( >\/E (A.35)

whereH:TW3<ooasN—>oo.
Substituting (A.33) and (A.35) into (A.32) yields the required result.
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A.3 Derivation of GMM based on FD

For the results of Theorem 2, we notice that

T -1 T

= (4FD 1 1

NT <0GMM — 0) = (M E AYfl;_l.tPtQAYtl-t) \/ﬁ E AYé_l.tPt72Au17t, (ASG)
t=2 t=2

where Auy = (Aug g, .-, AuLNt)'.
Using the results of lemma (A.6), as (N,T") — oo, we have

1 T

W AYt 1- tPt QAYt 1t —7p D ([2 - H) PO ([2 - H/) D7 (A37)

where D and II are defined in (A.34) and (2), respectively, and

T
1 _

7 2 AY Pz Ay —a N (Bo, 024D (T2 = T0) [(I, = T T + Ty (2 — IT)] (12 ~ 1) D),

t=2
(A.38)

where
b :—[D’<0371+50“’12>—< 0 )]\/E (A.39)
0 Ou,21 204,21 ' ’

Substituting (A.37) and (A.38) into (A.36) yields the required result.

A.4 Derivation of JIVE based on FOD

In order to show the results of Theorem 3, we first notice that

-1
N

Z Z yzf,;—Ltzét—l (Z}_1Z¢—1) - thflyg_l.t

t=1 |j=1 i#j

ﬁz Zzyzt 121 (2412 1) " g 1u{jt . (A.40)

IR (0555 o) -

H‘H

=1 [J=11i#j
For the denominator of (A.40), we have
T-1 N
—1 f
72223% ltzzt 1 Zt 12— 1) Zjt—1Y5 -1+
t= 1] 1 i#j
0 =
-1
- TZYt 141 “NT Zym 1tzzt 1 2 1Zt71) Zitflylf’t_l.t
t=1

= Z Yt 14Pt— 1Yz$f)1-t +0p (1)
— D’ I‘OD, (A.41)

by using the result of part (a) from both lemma (A.5) and lemma (A.7).
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For the numerator,

| TN
-1
JNT Z th ltzzt 1(Z2_1Zt71) thflu{,jt
t=1 i=1 j#i

= 0 T-1 N )
= = Yt—ll-tPt—lult Zyzft 1t Zi— 1 z 1Zt—1)7 Zit—lu{it

NT = T t=1 i=1

= 0
_ £y B
= \/ﬁ ;Yt—LtPtlult ( T2 > \/E"i_op (1)
— 4N (0,02 ,D'TyD), (A.42)

by using the results of part (b) from both lemma (A.5) and lemma (A.7).
As a result, combining equations (A.41) and (A.42), we obtain the result of Theorem 3 as
required.

A.5 Derivation of JIVE based on FD

Finally, for the results of Theorem 4, we have

T N
FD 1 .
VNT (O‘HVE 0) - |\ NT Z Z Z Ay 14Zi—2 (Zi—2Zi—2)  Zji2Ayji-14
t=2 j=1 i£j
T N
-1
-2 (Z1_2Z¢—9) " zji—2Auyji, (A.43)

where for the denominator, we have

T N
1
]\TZZZAYM 4%t 2(Zt Y/ 2) lzjt72ij'7t71.t

t2] 1 4i#£j

1 _
- NT ZAYt 1tPt QAYt 1t — ﬁ Z Z y” 1- tzzt 2 (Z;_zzt_g) ! Zit—QAYi,t—Lt

1
= ~7 Z AY, 1, P oAY 1440, (1)

t=2
— D' (I; —1)Ty (I; - I') D, (A.44)

by using the result of part (a) from both lemma (A.6) and lemma (A.8). For the numerator,

\/—ZZZA}%& 141 2( t— 2Zt—2)71 Zji—20u1,jt

t=2 j=1 i#£j

T T N

1 1 _1
- INT Z AYzlffl-tPt—QAuLt e~ Z Z Ay;,tfl-tzgtf2 (Z;,QZt_Q) Zit—2Auy it

NT t=2 NT t=2 i=1

1 & _
= — AY;_l,tPt_gAuLt —bg + Op (1)

VNT tz;

— 4N (0,05,D' (I —II) [(I; = IN)Tg + T (I — II')] (I — II') D), (A.45)
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by using the results of part (b) from both lemma (A.6) and lemma (A.8).
Consequently, combining equations (A.44) and (A.45), we obtain the result of Theorem 4 as
required.
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